A note on the pp conjecture for sheaves of spaces of orderings
Communications in Mathematics, Tome 24 (2016) no. 1, pp. 1-5 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we provide a direct and simple proof of a result previously obtained by Astier stating that the class of spaces of orderings for which the pp conjecture holds true is closed under sheaves over Boolean spaces.
In this note we provide a direct and simple proof of a result previously obtained by Astier stating that the class of spaces of orderings for which the pp conjecture holds true is closed under sheaves over Boolean spaces.
Classification : 11E10, 12D15
Keywords: spaces of orderings; pp conjecture
@article{COMIM_2016_24_1_a0,
     author = {G{\l}adki, Pawe{\l}},
     title = {A note on the pp conjecture for sheaves of spaces of orderings},
     journal = {Communications in Mathematics},
     pages = {1--5},
     year = {2016},
     volume = {24},
     number = {1},
     mrnumber = {3546802},
     zbl = {06670227},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a0/}
}
TY  - JOUR
AU  - Gładki, Paweł
TI  - A note on the pp conjecture for sheaves of spaces of orderings
JO  - Communications in Mathematics
PY  - 2016
SP  - 1
EP  - 5
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a0/
LA  - en
ID  - COMIM_2016_24_1_a0
ER  - 
%0 Journal Article
%A Gładki, Paweł
%T A note on the pp conjecture for sheaves of spaces of orderings
%J Communications in Mathematics
%D 2016
%P 1-5
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a0/
%G en
%F COMIM_2016_24_1_a0
Gładki, Paweł. A note on the pp conjecture for sheaves of spaces of orderings. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 1-5. http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a0/

[1] Astier, V.: On some sheaves of reduced special groups. Arch. for Math. Logic, 46, 5, 2007, 481-488, | DOI | MR

[2] Gładki, P., Marshall, M.: The pp conjecture for spaces of orderings of rational conics. J. Algebra Appl., 6, 2, 2007, 245-257, | DOI | MR | Zbl

[3] Gładki, P., Marshall, M.: Quotients of index two and general quotients in a space of orderings. Fund. Math., 229, 2015, 255-275, | DOI | MR

[4] Marshall, M.: Abstract Witt rings. Queen's Papers in Pure and Applied Math., 1980, Queen's University, Kingston, Ontario, | MR | Zbl

[5] Marshall, M.: Spaces of orderings and abstract real spectra. Lecture Notes in Mathematics, 1636, 1996, Springer, | MR | Zbl

[6] Marshall, M.: Open questions in the theory of spaces of orderings. J. Symbolic Logic, 67, 1, 2002, 341-352, Cambridge Univ Press, | DOI | MR | Zbl