Keywords: Linear differential equations; Meromorphic functions; Exponent of convergence of the sequence of zeros
@article{COMIM_2015_23_2_a4,
author = {Belaidi, Benharrat and Latreuch, Zinel\^aabidine},
title = {Zeros of {Solutions} and {Their} {Derivatives} of {Higher} {Order} {Non-homogeneous} {Linear} {Differential} {Equations}},
journal = {Communications in Mathematics},
pages = {143--161},
year = {2015},
volume = {23},
number = {2},
mrnumber = {3436682},
zbl = {1343.34202},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a4/}
}
TY - JOUR AU - Belaidi, Benharrat AU - Latreuch, Zinelâabidine TI - Zeros of Solutions and Their Derivatives of Higher Order Non-homogeneous Linear Differential Equations JO - Communications in Mathematics PY - 2015 SP - 143 EP - 161 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a4/ LA - en ID - COMIM_2015_23_2_a4 ER -
%0 Journal Article %A Belaidi, Benharrat %A Latreuch, Zinelâabidine %T Zeros of Solutions and Their Derivatives of Higher Order Non-homogeneous Linear Differential Equations %J Communications in Mathematics %D 2015 %P 143-161 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a4/ %G en %F COMIM_2015_23_2_a4
Belaidi, Benharrat; Latreuch, Zinelâabidine. Zeros of Solutions and Their Derivatives of Higher Order Non-homogeneous Linear Differential Equations. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 143-161. http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a4/
[1] Bank, S., Laine, I.: On the oscillation theory of $f''+Af=0$ where $A$ is entire. Trans. Amer. Math. Soc., 273, 1, 1982, 351-363, | MR | Zbl
[2] Bank, S., Laine, I.: On the zeros of meromorphic solutions of second order linear differential equations. Comment. Math. Helv., 58, 4, 1983, 656-677, | DOI | MR | Zbl
[3] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations. Mat. Vesnik, 60, 4, 2008, 233-246, | MR | Zbl
[4] Cao, T. B.: Growth of solutions of a class of complex differential equations. Ann. Polon. Math., 95, 2, 2009, 141-152, | DOI | MR | Zbl
[5] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations. Analysis, 14, 4, 1994, 425-438, | DOI | MR | Zbl
[6] Chen, Z. X., Gao, S. A.: The complex oscillation theory of certain nonhomogeneous linear differential equations with transcendental entire coefficients. J. Math. Anal. Appl., 179, 2, 1993, 403-416, | DOI | MR
[7] Chen, Z. X., Yang, C. C.: Some further results on the zeros and growths of entire solutions of second order linear differential equations. Kodai Math. J., 22, 2, 1999, 273-285, | DOI | MR
[8] Gundersen, G. G., Steinbart, E. M., Wang, S.: The possible orders of solutions of linear differential equations with polynomial coefficients. Trans. Amer. Math. Soc., 350, 3, 1998, 1225-1247, | DOI | MR | Zbl
[9] Hayman, W. K.: Meromorphic functions. 1964, Clarendon Press, Oxford, | MR | Zbl
[10] Hellerstein, S., Miles, J., Rossi, J.: On the growth of solutions of certain linear differential equations. Ann. Acad. Sci. Fenn. Ser. A I Math., 17, 2, 1992, 343-365, | DOI | MR | Zbl
[11] Laine, I.: Nevanlinna theory and complex differential equations. 1993, de Gruyter Studies in Mathematics, 15. Walter de Gruyter & Co., Berlin-New York, | MR
[12] Latreuch, Z., Belaïdi, B.: On the zeros of solutions and their derivatives of second order non-homogeneous linear differential equations. Miskolc Math. Notes, 16, 1, 2015, 237-248, | DOI | MR | Zbl
[13] Levin, B. Ya.: Lectures on entire functions. 150, 1996, American Mathematical Society, | MR | Zbl
[14] Rubel, L. A., Yang, C. C.: Values shared by an entire function and its derivative. 599, 1977, 101-103, Springer, Berlin, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976). Lecture Notes in Math.. | DOI | MR | Zbl
[15] Tu, J., Xu, H. Y., Zhang, C. Y.: On the zeros of solutions of any order of derivative of second order linear differential equations taking small functions. Electron. J. Qual. Theory Differ. Equ., 23, 2011, 1-17, | DOI | MR | Zbl
[16] Wang, L., Liu, H.: Growth of meromorphic solutions of higher order linear differential equations. Electron. J. Differential Equations, 125, 2014, 1-11, | MR | Zbl
[17] Yang, C. C., Yi, H. X.: Uniqueness theory of meromorphic functions. Kluwer Academic Publishers Group, Dordrecht, 557, 2003, | MR | Zbl
[18] Yang, L. Z.: The growth of linear differential equations and their applications. Israel J.Math., 147, 2005, 359-370, | DOI | MR | Zbl