Keywords: left-invariant control system; state space equivalence; detached feedback equivalence
@article{COMIM_2015_23_2_a2,
author = {Biggs, Rory and Remsing, Claudiu C.},
title = {On the equivalence of control systems on {Lie} groups},
journal = {Communications in Mathematics},
pages = {119--129},
year = {2015},
volume = {23},
number = {2},
mrnumber = {3436680},
zbl = {1338.93118},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a2/}
}
Biggs, Rory; Remsing, Claudiu C. On the equivalence of control systems on Lie groups. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 119-129. http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a2/
[1] Adams, R.M., Biggs, R., Remsing, C.C.: Equivalence of control systems on the Euclidean group SE(2). Control Cybernet., 41, 2012, 513-524, | MR | Zbl
[2] Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. 2004, Springer Science & Business Media, | MR | Zbl
[3] Biggs, R., Remsing, C.C.: A category of control systems. An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368, | MR | Zbl
[4] Biggs, R., Remsing, C.C.: Control affine systems on semisimple three-dimensional Lie groups. An. Şt. Univ. “A.I. Cuza” Iaşi. Ser. Mat., 59, 2013, 399-414, | MR | Zbl
[5] Biggs, R., Remsing, C.C.: Control affine systems on solvable three-dimensional Lie groups, I. Arch. Math. (Brno), 49, 2013, 187-197, | DOI | MR | Zbl
[6] Biggs, R., Remsing, C.C.: Control affine systems on solvable three-dimensional Lie groups, II. Note Mat., 33, 2013, 19-31, | MR | Zbl
[7] Brockett, R.W.: System theory on group manifolds and coset spaces. SIAM J. Control, 10, 1972, 265-284, | DOI | MR | Zbl
[8] Elkin, V.I.: Affine control systems: their equivalence, classification, quotient systems, and subsystems. J. Math. Sci., 88, 1998, 675-721, | DOI | MR | Zbl
[9] Gardner, R.B., Shadwick, W.F.: Feedback equivalence of control systems. Systems Control Lett., 8, 1987, 463-465, | MR | Zbl
[10] Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie Theory and Lie Transformation Groups. 1997, Springer Science & Business Media, | MR | Zbl
[11] Jakubczyk, B.: Equivalence and invariants of nonlinear control systems. Nonlinear Controllability and Optimal Control , 1990, 177-218, Marcel Dekker, In: H.J. Sussmann (ed.). | MR | Zbl
[12] Jakubczyk, B.: Critical {H}amiltonians and feedback invariants. Geometry of Feedback and Optimal Control , 1998, 219-256, Marcel Dekker, In: B. Jakubczyk, W. Respondek (eds.). | MR | Zbl
[13] Jakubczyk, B., Respondek, W.: On linearization of control systems. Bull. Acad. Polon. Sci. Ser. Sci. Math., 28, 1980, 517-522, | MR | Zbl
[14] Jurdjevic, V.: Geometric Control Theory. 1997, Cambridge University Press, | MR | Zbl
[15] Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups. J. Diff. Equations, 12, 1972, 313-329, | DOI | MR | Zbl
[16] Krener, A.J.: On the equivalence of control systems and the linearization of nonlinear systems. SIAM J. Control, 11, 1973, 670-676, | DOI | MR | Zbl
[17] Remsing, C.C.: Optimal control and Hamilton-Poisson formalism. Int. J. Pure Appl. Math., 59, 2010, 11-17, | MR | Zbl
[18] Respondek, W., Tall, I.A.: Feedback equivalence of nonlinear control systems: a survey on formal approach. Chaos in Automatic Control, 2006, 137-262, In: W. Perruquetti, J.-P. Barbot (eds.). | MR | Zbl
[19] Sachkov, Y.L.: Control theory on Lie groups. J. Math. Sci., 156, 2009, 381-439, | DOI | MR | Zbl
[20] Sussmann, H.J.: An extension of a theorem of Nagano on transitive Lie algebras. Proc. Amer. Math. Soc., 45, 1974, 349-356, | DOI | MR | Zbl
[21] Sussmann, H.J.: Lie brackets, real analyticity and geometric control. Differential Geometric Control Theory, 1983, 1-116, Birkhäuser, In: R.W. Brockett, R.S. Millman, H.J. Sussmann (eds.). | MR | Zbl