On the equivalence of control systems on Lie groups
Communications in Mathematics, Tome 23 (2015) no. 2, pp. 119-129 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.
We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.
Classification : 22E60, 93B27
Keywords: left-invariant control system; state space equivalence; detached feedback equivalence
@article{COMIM_2015_23_2_a2,
     author = {Biggs, Rory and Remsing, Claudiu C.},
     title = {On the equivalence of control systems on {Lie} groups},
     journal = {Communications in Mathematics},
     pages = {119--129},
     year = {2015},
     volume = {23},
     number = {2},
     mrnumber = {3436680},
     zbl = {1338.93118},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a2/}
}
TY  - JOUR
AU  - Biggs, Rory
AU  - Remsing, Claudiu C.
TI  - On the equivalence of control systems on Lie groups
JO  - Communications in Mathematics
PY  - 2015
SP  - 119
EP  - 129
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a2/
LA  - en
ID  - COMIM_2015_23_2_a2
ER  - 
%0 Journal Article
%A Biggs, Rory
%A Remsing, Claudiu C.
%T On the equivalence of control systems on Lie groups
%J Communications in Mathematics
%D 2015
%P 119-129
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a2/
%G en
%F COMIM_2015_23_2_a2
Biggs, Rory; Remsing, Claudiu C. On the equivalence of control systems on Lie groups. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 119-129. http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a2/

[1] Adams, R.M., Biggs, R., Remsing, C.C.: Equivalence of control systems on the Euclidean group SE(2). Control Cybernet., 41, 2012, 513-524, | MR | Zbl

[2] Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. 2004, Springer Science & Business Media, | MR | Zbl

[3] Biggs, R., Remsing, C.C.: A category of control systems. An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368, | MR | Zbl

[4] Biggs, R., Remsing, C.C.: Control affine systems on semisimple three-dimensional Lie groups. An. Şt. Univ. “A.I. Cuza” Iaşi. Ser. Mat., 59, 2013, 399-414, | MR | Zbl

[5] Biggs, R., Remsing, C.C.: Control affine systems on solvable three-dimensional Lie groups, I. Arch. Math. (Brno), 49, 2013, 187-197, | DOI | MR | Zbl

[6] Biggs, R., Remsing, C.C.: Control affine systems on solvable three-dimensional Lie groups, II. Note Mat., 33, 2013, 19-31, | MR | Zbl

[7] Brockett, R.W.: System theory on group manifolds and coset spaces. SIAM J. Control, 10, 1972, 265-284, | DOI | MR | Zbl

[8] Elkin, V.I.: Affine control systems: their equivalence, classification, quotient systems, and subsystems. J. Math. Sci., 88, 1998, 675-721, | DOI | MR | Zbl

[9] Gardner, R.B., Shadwick, W.F.: Feedback equivalence of control systems. Systems Control Lett., 8, 1987, 463-465, | MR | Zbl

[10] Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie Theory and Lie Transformation Groups. 1997, Springer Science & Business Media, | MR | Zbl

[11] Jakubczyk, B.: Equivalence and invariants of nonlinear control systems. Nonlinear Controllability and Optimal Control , 1990, 177-218, Marcel Dekker, In: H.J. Sussmann (ed.). | MR | Zbl

[12] Jakubczyk, B.: Critical {H}amiltonians and feedback invariants. Geometry of Feedback and Optimal Control , 1998, 219-256, Marcel Dekker, In: B. Jakubczyk, W. Respondek (eds.). | MR | Zbl

[13] Jakubczyk, B., Respondek, W.: On linearization of control systems. Bull. Acad. Polon. Sci. Ser. Sci. Math., 28, 1980, 517-522, | MR | Zbl

[14] Jurdjevic, V.: Geometric Control Theory. 1997, Cambridge University Press, | MR | Zbl

[15] Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups. J. Diff. Equations, 12, 1972, 313-329, | DOI | MR | Zbl

[16] Krener, A.J.: On the equivalence of control systems and the linearization of nonlinear systems. SIAM J. Control, 11, 1973, 670-676, | DOI | MR | Zbl

[17] Remsing, C.C.: Optimal control and Hamilton-Poisson formalism. Int. J. Pure Appl. Math., 59, 2010, 11-17, | MR | Zbl

[18] Respondek, W., Tall, I.A.: Feedback equivalence of nonlinear control systems: a survey on formal approach. Chaos in Automatic Control, 2006, 137-262, In: W. Perruquetti, J.-P. Barbot (eds.). | MR | Zbl

[19] Sachkov, Y.L.: Control theory on Lie groups. J. Math. Sci., 156, 2009, 381-439, | DOI | MR | Zbl

[20] Sussmann, H.J.: An extension of a theorem of Nagano on transitive Lie algebras. Proc. Amer. Math. Soc., 45, 1974, 349-356, | DOI | MR | Zbl

[21] Sussmann, H.J.: Lie brackets, real analyticity and geometric control. Differential Geometric Control Theory, 1983, 1-116, Birkhäuser, In: R.W. Brockett, R.S. Millman, H.J. Sussmann (eds.). | MR | Zbl