On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$
Communications in Mathematics, Tome 23 (2015) no. 2, pp. 113-117
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The two related Diophantine equations: $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$, have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.
The two related Diophantine equations: $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$, have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.
Classification :
11D41, 11D72
Keywords: Diophantine equation $A^4+nB^4=C^2$; Diophantine equation $A^4-nB^4=C^2$; Diophantine equation $X_1^4+4X_2^4=X_3^8+4X_4^8$; Diophantine equation $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$
Keywords: Diophantine equation $A^4+nB^4=C^2$; Diophantine equation $A^4-nB^4=C^2$; Diophantine equation $X_1^4+4X_2^4=X_3^8+4X_4^8$; Diophantine equation $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$
@article{COMIM_2015_23_2_a1,
author = {Jena, Susil Kumar},
title = {On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$},
journal = {Communications in Mathematics},
pages = {113--117},
year = {2015},
volume = {23},
number = {2},
mrnumber = {3436679},
zbl = {1350.11045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a1/}
}
Jena, Susil Kumar. On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 113-117. http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a1/
[1] Choudhry, A.: The Diophantine equation $A^4 + 4B^4 = C^4+4D^4$. Indian J. Pure Appl. Math., 29, 1998, 1127-1128, | MR | Zbl
[2] Dickson, L. E.: History of the Theory of Numbers. 2, 1952, Chelsea Publishing Company, New York,
[3] Guy, R. K.: Unsolved Problems in Number Theory. 2004, Springer Science+Business Media Inc., New York, Third Edition. | MR | Zbl
[4] Jena, S. K.: Beyond the Method of Infinite Descent. J. Comb. Inf. Syst. Sci., 35, 2010, 501-511,