The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds
Communications in Mathematics, Tome 23 (2015) no. 2, pp. 101-112
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study Lipschitz-Fredholm vector fields on bounded Fréchet-Finsler manifolds. In this context we generalize the Morse-Sard-Brown theorem, asserting that if $M$ is a connected smooth bounded Fréchet-Finsler manifold endowed with a connection $\mathcal {K}$ and if $\xi$ is a smooth Lipschitz-Fredholm vector field on $M$ with respect to $\mathcal {K}$ which satisfies condition (WCV), then, for any smooth functional $l$ on $M$ which is associated to $\xi$, the set of the critical values of $l$ is of first category in $\mathbb{R}$. Therefore, the set of the regular values of $l$ is a residual Baire subset of $\mathbb {R}$.
In this paper we study Lipschitz-Fredholm vector fields on bounded Fréchet-Finsler manifolds. In this context we generalize the Morse-Sard-Brown theorem, asserting that if $M$ is a connected smooth bounded Fréchet-Finsler manifold endowed with a connection $\mathcal {K}$ and if $\xi$ is a smooth Lipschitz-Fredholm vector field on $M$ with respect to $\mathcal {K}$ which satisfies condition (WCV), then, for any smooth functional $l$ on $M$ which is associated to $\xi$, the set of the critical values of $l$ is of first category in $\mathbb{R}$. Therefore, the set of the regular values of $l$ is a residual Baire subset of $\mathbb {R}$.
Classification : 58B15, 58B20, 58K05
Keywords: Fréchet manifolds; condition (CV); Finsler structures; Fredholm vector fields
@article{COMIM_2015_23_2_a0,
     author = {Eftekharinasab, Kaveh},
     title = {The {Morse-Sard-Brown} {Theorem} for {Functionals} on {Bounded} {Fr\'echet-Finsler} {Manifolds}},
     journal = {Communications in Mathematics},
     pages = {101--112},
     year = {2015},
     volume = {23},
     number = {2},
     mrnumber = {3436678},
     zbl = {1338.58027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a0/}
}
TY  - JOUR
AU  - Eftekharinasab, Kaveh
TI  - The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds
JO  - Communications in Mathematics
PY  - 2015
SP  - 101
EP  - 112
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a0/
LA  - en
ID  - COMIM_2015_23_2_a0
ER  - 
%0 Journal Article
%A Eftekharinasab, Kaveh
%T The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds
%J Communications in Mathematics
%D 2015
%P 101-112
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a0/
%G en
%F COMIM_2015_23_2_a0
Eftekharinasab, Kaveh. The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 101-112. http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a0/

[1] Bejan, C.L.: Finsler structures on Fréchet bundles. Proc. 3-rd Seminar on Finsler spaces, Univ. Braşov 1984, 1984, 49-54, Societatea de ştiinţe Matematice Romania, Bucharest, | MR

[2] Dodson, C.T.J.: Some recent work in Fréchet geometry. Balkan J. Geometry and Its Applications, 17, 2, 2012, 6-21, | MR | Zbl

[3] Eftekharinasab, K.: Sard's theorem for mappings between Fréchet manifolds. Ukrainian Math. J., 62, 12, 2011, 1896-1905, | DOI | MR

[4] Eftekharinasab, K.: Geometry of Bounded Fréchet Manifolds. Rocky Mountain J. Math., to appear,

[5] Eliasson, H.: Geometry of manifolds of maps. J. Differential Geometry, 1, 1967, 169-194, | DOI | MR | Zbl

[6] Glöckner, H.: Implicit functions from topological vector spaces in the presence of metric estimates. preprint, Arxiv:math/6612673, 2006, | MR

[7] Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bulletin of the AMS, 7, 1982, 65-222, | DOI | MR | Zbl

[8] Müller, O.: A metric approach to Fréchet geometry. Journal of Geometry and Physics, 58, 11, 2008, 1477-1500, | DOI | MR | Zbl

[9] Palais, R.S.: Lusternik-Schnirelman theory on Banach manifolds. Topology, 5, 2, 1966, 115-132, | DOI | MR | Zbl

[10] Palais, R.S.: Critical point theory and the minimax principle. Proc. Symp. Pur. Math., 15, 1970, 185-212, | DOI | MR | Zbl

[11] Tromba, A.J.: A general approach to Morse theory. J. Differential Geometry, 12, 1, 1977, 47-85, Lehigh University, | MR | Zbl

[12] Tromba, A.J.: The Morse-Sard-Brown theorem for functionals and the problem of Plateau. Amer. J. Math., 99, 1977, 1251-1256, | DOI | MR | Zbl

[13] Tromba, A.J.: The Euler characteristic of vector fields on Banach manifolds and a globalization of Leray-Schauder degree. Advances in Mathematics, 28, 2, 1978, 148-173, | DOI | MR | Zbl