Keywords: Fréchet manifolds; condition (CV); Finsler structures; Fredholm vector fields
@article{COMIM_2015_23_2_a0,
author = {Eftekharinasab, Kaveh},
title = {The {Morse-Sard-Brown} {Theorem} for {Functionals} on {Bounded} {Fr\'echet-Finsler} {Manifolds}},
journal = {Communications in Mathematics},
pages = {101--112},
year = {2015},
volume = {23},
number = {2},
mrnumber = {3436678},
zbl = {1338.58027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a0/}
}
Eftekharinasab, Kaveh. The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 101-112. http://geodesic.mathdoc.fr/item/COMIM_2015_23_2_a0/
[1] Bejan, C.L.: Finsler structures on Fréchet bundles. Proc. 3-rd Seminar on Finsler spaces, Univ. Braşov 1984, 1984, 49-54, Societatea de ştiinţe Matematice Romania, Bucharest, | MR
[2] Dodson, C.T.J.: Some recent work in Fréchet geometry. Balkan J. Geometry and Its Applications, 17, 2, 2012, 6-21, | MR | Zbl
[3] Eftekharinasab, K.: Sard's theorem for mappings between Fréchet manifolds. Ukrainian Math. J., 62, 12, 2011, 1896-1905, | DOI | MR
[4] Eftekharinasab, K.: Geometry of Bounded Fréchet Manifolds. Rocky Mountain J. Math., to appear,
[5] Eliasson, H.: Geometry of manifolds of maps. J. Differential Geometry, 1, 1967, 169-194, | DOI | MR | Zbl
[6] Glöckner, H.: Implicit functions from topological vector spaces in the presence of metric estimates. preprint, Arxiv:math/6612673, 2006, | MR
[7] Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bulletin of the AMS, 7, 1982, 65-222, | DOI | MR | Zbl
[8] Müller, O.: A metric approach to Fréchet geometry. Journal of Geometry and Physics, 58, 11, 2008, 1477-1500, | DOI | MR | Zbl
[9] Palais, R.S.: Lusternik-Schnirelman theory on Banach manifolds. Topology, 5, 2, 1966, 115-132, | DOI | MR | Zbl
[10] Palais, R.S.: Critical point theory and the minimax principle. Proc. Symp. Pur. Math., 15, 1970, 185-212, | DOI | MR | Zbl
[11] Tromba, A.J.: A general approach to Morse theory. J. Differential Geometry, 12, 1, 1977, 47-85, Lehigh University, | MR | Zbl
[12] Tromba, A.J.: The Morse-Sard-Brown theorem for functionals and the problem of Plateau. Amer. J. Math., 99, 1977, 1251-1256, | DOI | MR | Zbl
[13] Tromba, A.J.: The Euler characteristic of vector fields on Banach manifolds and a globalization of Leray-Schauder degree. Advances in Mathematics, 28, 2, 1978, 148-173, | DOI | MR | Zbl