The gap theorems for some extremal submanifolds in a unit sphere
Communications in Mathematics, Tome 23 (2015) no. 1, pp. 85-93
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M$ be an $n$-dimensional submanifold in the unit sphere $S^{n+p}$, we call $M$ a $k$-extremal submanifold if it is a critical point of the functional $\int _M\rho ^{2k}\,\mathrm{d}v $. In this paper, we can study gap phenomenon for these submanifolds.
Let $M$ be an $n$-dimensional submanifold in the unit sphere $S^{n+p}$, we call $M$ a $k$-extremal submanifold if it is a critical point of the functional $\int _M\rho ^{2k}\,\mathrm{d}v $. In this paper, we can study gap phenomenon for these submanifolds.
Classification : 53C24, 53C40
Keywords: Extremal functional; Mean curvature; Totally umbilical
@article{COMIM_2015_23_1_a5,
     author = {Wu, Xi Guo and Lan},
     title = {The gap theorems for some extremal submanifolds in a unit sphere},
     journal = {Communications in Mathematics},
     pages = {85--93},
     year = {2015},
     volume = {23},
     number = {1},
     mrnumber = {3394079},
     zbl = {1342.53077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a5/}
}
TY  - JOUR
AU  - Wu, Xi Guo and Lan
TI  - The gap theorems for some extremal submanifolds in a unit sphere
JO  - Communications in Mathematics
PY  - 2015
SP  - 85
EP  - 93
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a5/
LA  - en
ID  - COMIM_2015_23_1_a5
ER  - 
%0 Journal Article
%A Wu, Xi Guo and Lan
%T The gap theorems for some extremal submanifolds in a unit sphere
%J Communications in Mathematics
%D 2015
%P 85-93
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a5/
%G en
%F COMIM_2015_23_1_a5
Wu, Xi Guo and Lan. The gap theorems for some extremal submanifolds in a unit sphere. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a5/

[1] Guo, Z., Li, H.: A variational problem for submanifolds in a sphere. Monatsh. Math., 152, 2007, 295-302, | DOI | MR | Zbl

[2] Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure. Appl. Math., 27, 1974, 715-727, | DOI | MR | Zbl

[3] Kenmotsu, K.: Some remarks on minimal submanifolds. Tohoku. Math. J., 22, 1970, 240-248, | DOI | MR | Zbl

[4] Li, A.-M., Li., J.-M.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math., 58, 1992, 582-594, | DOI | MR

[5] Li., H.: Willmore hypersurfaces in a sphere. Asian. J. Math., 5, 2001, 365-378, | DOI | MR

[6] Li., H.: Willmore submanifolds in a sphere. Math. Res. Letters, 9, 2002, 771-790, | DOI | MR

[7] Simons., J.: Minimal varieties in Riemannian manifolds. Ann. of Math., 88, 1968, 62-105, | DOI | MR

[8] Xu, H.-W., Yang., D.: The gap phenomenon for extremal submanifolds in a Sphere. Differential Geom and its Applications, 29, 2011, 26-34, | MR

[9] Wu., L.: A class of variational problems for submanifolds in a space form. Houston J. Math., 35, 2009, 435-450, | MR