Keywords: Extremal functional; Mean curvature; Totally umbilical
@article{COMIM_2015_23_1_a5,
author = {Wu, Xi Guo and Lan},
title = {The gap theorems for some extremal submanifolds in a unit sphere},
journal = {Communications in Mathematics},
pages = {85--93},
year = {2015},
volume = {23},
number = {1},
mrnumber = {3394079},
zbl = {1342.53077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a5/}
}
Wu, Xi Guo and Lan. The gap theorems for some extremal submanifolds in a unit sphere. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a5/
[1] Guo, Z., Li, H.: A variational problem for submanifolds in a sphere. Monatsh. Math., 152, 2007, 295-302, | DOI | MR | Zbl
[2] Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure. Appl. Math., 27, 1974, 715-727, | DOI | MR | Zbl
[3] Kenmotsu, K.: Some remarks on minimal submanifolds. Tohoku. Math. J., 22, 1970, 240-248, | DOI | MR | Zbl
[4] Li, A.-M., Li., J.-M.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math., 58, 1992, 582-594, | DOI | MR
[5] Li., H.: Willmore hypersurfaces in a sphere. Asian. J. Math., 5, 2001, 365-378, | DOI | MR
[6] Li., H.: Willmore submanifolds in a sphere. Math. Res. Letters, 9, 2002, 771-790, | DOI | MR
[7] Simons., J.: Minimal varieties in Riemannian manifolds. Ann. of Math., 88, 1968, 62-105, | DOI | MR
[8] Xu, H.-W., Yang., D.: The gap phenomenon for extremal submanifolds in a Sphere. Differential Geom and its Applications, 29, 2011, 26-34, | MR
[9] Wu., L.: A class of variational problems for submanifolds in a space form. Houston J. Math., 35, 2009, 435-450, | MR