Newton transformations on null hypersurfaces
Communications in Mathematics, Tome 23 (2015) no. 1, pp. 57-83 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Any rigged null hypersurface is provided with two shape operators: with respect to the rigging and the rigged vector fields respectively. The present paper deals with the Newton transformations built on both of them and establishes related curvature properties. The laters are used to derive necessary and sufficient conditions for higher-order umbilicity and maximality we introduced in passing, and develop general Minkowski-type formulas for the null hypersurface, supported by some physical models in perfect-fluid space-times.
Any rigged null hypersurface is provided with two shape operators: with respect to the rigging and the rigged vector fields respectively. The present paper deals with the Newton transformations built on both of them and establishes related curvature properties. The laters are used to derive necessary and sufficient conditions for higher-order umbilicity and maximality we introduced in passing, and develop general Minkowski-type formulas for the null hypersurface, supported by some physical models in perfect-fluid space-times.
Classification : 53B30, 53C42, 53Z05
Keywords: Null hypersurfaces; null rigging; Newton transformations; Minkowski integral formulas.
@article{COMIM_2015_23_1_a4,
     author = {Fotsing, Cyriaque Atindogb\'e and Hans Tetsing},
     title = {Newton transformations on null hypersurfaces},
     journal = {Communications in Mathematics},
     pages = {57--83},
     year = {2015},
     volume = {23},
     number = {1},
     mrnumber = {3394078},
     zbl = {1342.53028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a4/}
}
TY  - JOUR
AU  - Fotsing, Cyriaque Atindogbé and Hans Tetsing
TI  - Newton transformations on null hypersurfaces
JO  - Communications in Mathematics
PY  - 2015
SP  - 57
EP  - 83
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a4/
LA  - en
ID  - COMIM_2015_23_1_a4
ER  - 
%0 Journal Article
%A Fotsing, Cyriaque Atindogbé and Hans Tetsing
%T Newton transformations on null hypersurfaces
%J Communications in Mathematics
%D 2015
%P 57-83
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a4/
%G en
%F COMIM_2015_23_1_a4
Fotsing, Cyriaque Atindogbé and Hans Tetsing. Newton transformations on null hypersurfaces. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 57-83. http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a4/

[1] Alías, L. J., Jr, A. Brasil, Colares, A. Gervasio: Integral formulas for spacelike hypersurfaces in conformally stationary space-times and applications. Proc. Edinb. Math. Soc., 46, 2003, 465-488, | DOI | MR

[2] Alías, L. J., Lira, J. H. S. de, Malacarne, J. M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces. Journal of the Institute of Mathematics of Jussieu, 5, 04, 2006, 527-562, | DOI | MR | Zbl

[3] Alías, L. J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized Robertson-Walker space-times. Gen. Relat. Grav., 27, 1995, 71-84, | DOI | MR

[4] Alías, L. J., Romero, A., Sánchez, M.: Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems. Tohoku Math. J., 49, 1997, 337-345, | DOI | MR | Zbl

[5] Atindogbe, C.: Blaschke type normalization on light-Like Hypersurfaces. Journal of Mathematical Physics, Analysis, Geometry, 6, 4, 2010, 362-382, | MR | Zbl

[6] Atindogbe, C.: Normalization and prescribed extrinsic scalar curvature on null hypersurfaces. Journal of Geometry and Physics, 60, 2010, 1762-1770, | DOI | MR

[7] Atindogbe, C., Berard-Bergery, L.: Distinguished normalization on non-minimal null hypersurfaces. Mathematical Sciences and Applications E-notes, 1, 1, 2013, 18-35, | Zbl

[8] Atindogbe, C., Duggal, K.L.: Conformal screen on null hypersurfaces. Int. J. of Pure and Applied Math., 11, 4, 2004, 421-442, | MR

[9] Atindogbe, C., Ezin, J.-P., Tossa, J.: Pseudo-inversion of degenerate metrics. Int. J. of Mathematics and Mathematical Sciences, 55, 2003, 3479-3501, | DOI | MR

[10] Bivens, I.: Integral formulas and hyperspheres in a simply connected space form. Proc.Am. Math. Soc., 88, 1983, 113-118, | DOI | MR | Zbl

[11] Dong, J., Liu, X.: Totally Umbilical Lightlike Hypersurfaces in Robertson-Walker Spacetimes. ISRN Geometry, 2014, 2014, Article ID 974695, | DOI | MR | Zbl

[12] Duggal, K. L., Bejancu, A.: Degenerate hypersurface of semi-Riemannian manifolds. Bull. Inst. Politehnie Iasi (S.1), 37, 1991, 13-22, | MR

[13] Duggal, K. L., Giménez, A.: Lightlike hypersurfaces of Lorentzian manifolds with distinguished screen. Journal of Geometry and Physics, 55, 2005, 107-122, | DOI | MR | Zbl

[14] Gutierrez, M., Olea, B.: Lightlike hypersurfaces in Lorentzian manifolds. arXiv: 1207.1030v1 [math.DG], 2012,

[15] Hsiung, C. C.: Some integral formulas for closed hypersurfaces. Math. Scand., 2, 1954, 286-294, | DOI | MR

[16] Mars, M., Wolf, T.: $G_{2}$ perfect-fluid cosmologies with a proper conformal Killing vector. Class. Quantum Grav., 14 2303, 1997, | DOI | MR