On a class of nonlocal problem involving a critical exponent
Communications in Mathematics, Tome 23 (2015) no. 1, pp. 47-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal $p$-Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.
In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal $p$-Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.
Classification : 35J30, 35J60, 35J92
Keywords: $p$-Laplacian; Dirichlet problem; critical exponent.
@article{COMIM_2015_23_1_a3,
     author = {Ourraoui, Anass},
     title = {On a class of nonlocal problem involving a critical exponent},
     journal = {Communications in Mathematics},
     pages = {47--55},
     year = {2015},
     volume = {23},
     number = {1},
     mrnumber = {3394077},
     zbl = {1355.35063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a3/}
}
TY  - JOUR
AU  - Ourraoui, Anass
TI  - On a class of nonlocal problem involving a critical exponent
JO  - Communications in Mathematics
PY  - 2015
SP  - 47
EP  - 55
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a3/
LA  - en
ID  - COMIM_2015_23_1_a3
ER  - 
%0 Journal Article
%A Ourraoui, Anass
%T On a class of nonlocal problem involving a critical exponent
%J Communications in Mathematics
%D 2015
%P 47-55
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a3/
%G en
%F COMIM_2015_23_1_a3
Ourraoui, Anass. On a class of nonlocal problem involving a critical exponent. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 47-55. http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a3/

[1] Alves, C.O., Corrêa, F.J.S.A., Figueiredo, G.M.: On a class of nonlocal elliptic problems with critical growth. Differential Equation and Applications, 2, 2010, 409-417, | DOI | MR | Zbl

[2] Azorero, J.G., Alonso, I.P.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Amer. Math. Soc., 323, 2, 1991, 877-895, | DOI | MR | Zbl

[3] Hamidi, A. El, Rakotoson, J.M.: Compactness and quasilinear problems with critical exponents. Differ. Integral Equ., 18, 2005, 1201-1220, | MR | Zbl

[4] Figueiredo, M. G.: Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl., 401, 2013, 706-713, | DOI | MR | Zbl

[5] Figueiredo, G. M., Santos, Jefferson A.: On a $\Phi $-Kirchhoff multivalued problem with critical growth in an Orlicz-Sobolev space. Asymptotic Analysis, 89, 1, 2014, 151-172, | MR | Zbl

[6] Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal., 94, 2014, 156-170, | DOI | MR | Zbl

[7] Fukagai, N., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on RN. Funkciallaj Ekvacioj, 49, 1981, 235-267, | DOI | MR

[8] Lions, P. L.: The concentraction-compactness principle in the calculus of virations. The limit case, Part 1. Rev Mat Iberoamericana, 1, 1985, 145-201, | DOI | MR

[9] Ourraoui, A.: On a $p$-Kirchhoff problem involving a critical nonlinearity. C. R. Acad. Sci. Paris, 352, 2014, 295-298, | DOI | MR | Zbl

[10] Pucci, P.: Geometric description of the mountain pass critical points. Contemporary Mathematicians, 2, 2014, 469-471.

[11] Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in $R^N$ involving nonlocal operators. Rev. Mat. Iberoam., 2014, | MR

[12] Willem, M.: Minimax Theorems. 1996, Springer, | MR | Zbl