Existence of solutions for Navier problems with degenerate nonlinear elliptic equations
Communications in Mathematics, Tome 23 (2015) no. 1, pp. 33-45 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin {equation*} \Delta (v(x)\,\vert \Delta u\vert ^{q-2}\Delta u) -\sum _{j=1}^n D_j\bigl [\omega (x) {\cal A}_j(x, u, {\nabla }u)\bigr ] = f_0(x) - \sum _{j=1}^nD_jf_j(x), \text { in }\Omega \end {equation*} in the setting of the weighted Sobolev spaces.
In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin {equation*} \Delta (v(x)\,\vert \Delta u\vert ^{q-2}\Delta u) -\sum _{j=1}^n D_j\bigl [\omega (x) {\cal A}_j(x, u, {\nabla }u)\bigr ] = f_0(x) - \sum _{j=1}^nD_jf_j(x), \text { in }\Omega \end {equation*} in the setting of the weighted Sobolev spaces.
Classification : 35J60, 35J70
Keywords: degenerate nolinear elliptic equations; weighted Sobolev spaces; Navier problem
@article{COMIM_2015_23_1_a2,
     author = {Cavalheiro, Albo Carlos},
     title = {Existence of solutions for {Navier} problems with degenerate nonlinear elliptic equations},
     journal = {Communications in Mathematics},
     pages = {33--45},
     year = {2015},
     volume = {23},
     number = {1},
     mrnumber = {3394076},
     zbl = {1353.35167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a2/}
}
TY  - JOUR
AU  - Cavalheiro, Albo Carlos
TI  - Existence of solutions for Navier problems with degenerate nonlinear elliptic equations
JO  - Communications in Mathematics
PY  - 2015
SP  - 33
EP  - 45
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a2/
LA  - en
ID  - COMIM_2015_23_1_a2
ER  - 
%0 Journal Article
%A Cavalheiro, Albo Carlos
%T Existence of solutions for Navier problems with degenerate nonlinear elliptic equations
%J Communications in Mathematics
%D 2015
%P 33-45
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a2/
%G en
%F COMIM_2015_23_1_a2
Cavalheiro, Albo Carlos. Existence of solutions for Navier problems with degenerate nonlinear elliptic equations. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a2/

[1] Cavalheiro, A.C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems. J. Appl. Anal., 19, 2013, 41-54, | DOI | MR | Zbl

[2] Cavalheiro, A.C.: Existence results for Dirichlet problems with degenerate $p$-Laplacian. Opuscula Math., 33, 3, 2013, 439-453, | DOI | MR

[3] Chipot, M.: Elliptic Equations: An Introductory Course. 2009, Birkhäuser, Berlin, | MR | Zbl

[4] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. 1997, Walter de Gruyter, Berlin, | MR | Zbl

[5] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7, 1982, 77–116, | DOI | MR | Zbl

[6] Fučík, S., John, O., Kufner, A.: Function Spaces. 1977, Noordhoff International Publ., Leiden, | MR | Zbl

[7] Garcia-Cuerva, J., Francia, J.L. Rubio de: Weighted Norm Inequalities and Related Topics. 116, 1985, North-Holland Mathematics Studies, | MR

[8] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order. 1983, Springer, New York, | MR

[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. 1993, Oxford Math., Clarendon Press, | MR | Zbl

[10] Kufner, A.: Weighted Sobolev Spaces. 1985, John Wiley & Sons, | MR | Zbl

[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165, 1972, 207-226, | DOI | MR | Zbl

[12] Talbi, M., Tsouli, N.: On the spectrum of the weighted p-Biharmonic operator with weight. Mediterr. J. Math., 4, 2007, 73-86, | DOI | MR | Zbl

[13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. 1986, Academic Press, São Diego, | MR | Zbl

[14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. 1736, 2000, Springer-Verlag, | MR | Zbl

[15] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. I. 1990, Springer-Verlag,

[16] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. II/B. 1990, Springer-Verlag, | MR