Keywords: degenerate nolinear elliptic equations; weighted Sobolev spaces; Navier problem
@article{COMIM_2015_23_1_a2,
author = {Cavalheiro, Albo Carlos},
title = {Existence of solutions for {Navier} problems with degenerate nonlinear elliptic equations},
journal = {Communications in Mathematics},
pages = {33--45},
year = {2015},
volume = {23},
number = {1},
mrnumber = {3394076},
zbl = {1353.35167},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a2/}
}
TY - JOUR AU - Cavalheiro, Albo Carlos TI - Existence of solutions for Navier problems with degenerate nonlinear elliptic equations JO - Communications in Mathematics PY - 2015 SP - 33 EP - 45 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a2/ LA - en ID - COMIM_2015_23_1_a2 ER -
Cavalheiro, Albo Carlos. Existence of solutions for Navier problems with degenerate nonlinear elliptic equations. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a2/
[1] Cavalheiro, A.C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems. J. Appl. Anal., 19, 2013, 41-54, | DOI | MR | Zbl
[2] Cavalheiro, A.C.: Existence results for Dirichlet problems with degenerate $p$-Laplacian. Opuscula Math., 33, 3, 2013, 439-453, | DOI | MR
[3] Chipot, M.: Elliptic Equations: An Introductory Course. 2009, Birkhäuser, Berlin, | MR | Zbl
[4] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. 1997, Walter de Gruyter, Berlin, | MR | Zbl
[5] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7, 1982, 77–116, | DOI | MR | Zbl
[6] Fučík, S., John, O., Kufner, A.: Function Spaces. 1977, Noordhoff International Publ., Leiden, | MR | Zbl
[7] Garcia-Cuerva, J., Francia, J.L. Rubio de: Weighted Norm Inequalities and Related Topics. 116, 1985, North-Holland Mathematics Studies, | MR
[8] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order. 1983, Springer, New York, | MR
[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. 1993, Oxford Math., Clarendon Press, | MR | Zbl
[10] Kufner, A.: Weighted Sobolev Spaces. 1985, John Wiley & Sons, | MR | Zbl
[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165, 1972, 207-226, | DOI | MR | Zbl
[12] Talbi, M., Tsouli, N.: On the spectrum of the weighted p-Biharmonic operator with weight. Mediterr. J. Math., 4, 2007, 73-86, | DOI | MR | Zbl
[13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. 1986, Academic Press, São Diego, | MR | Zbl
[14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. 1736, 2000, Springer-Verlag, | MR | Zbl
[15] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. I. 1990, Springer-Verlag,
[16] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. II/B. 1990, Springer-Verlag, | MR