Keywords: Very $J^{\#}$-clean matrix; very $J^{\#}$-clean ring; local ring.
@article{COMIM_2015_23_1_a1,
author = {Gurgun, Orhan and Ungor, Sait Halicioglu and Burcu},
title = {A subclass of strongly clean rings},
journal = {Communications in Mathematics},
pages = {13--31},
year = {2015},
volume = {23},
number = {1},
mrnumber = {3394075},
zbl = {1347.16038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a1/}
}
Gurgun, Orhan; Ungor, Sait Halicioglu and Burcu. A subclass of strongly clean rings. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 13-31. http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a1/
[1] Agayev, N., Harmanci, A., Halicioglu, S.: On abelian rings. Turk J. Math., 34, 2010, 465-474, | MR | Zbl
[2] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent. Comm. Algebra, 30, 7, 2002, 3327-3336, | DOI | MR | Zbl
[3] Ara, P.: Strongly $\pi $-regular rings have stable range one. Proc. Amer. Math. Soc., 124, 1996, 3293-3298, | DOI | MR | Zbl
[4] Borooah, G., Diesl, A. J., Dorsey, T. J.: Strongly clean matrix rings over commutative local rings. J. Pure Appl. Algebra, 212, 1, 2008, 281-296, | MR | Zbl
[5] Chen, H.: On strongly $J$-clean rings. Comm. Algebra, 38, 2010, 3790-3804, | DOI | MR | Zbl
[6] Chen, H.: Rings related to stable range conditions. 11, 2011, World Scientific, Hackensack, NJ, | MR | Zbl
[7] Chen, H., Kose, H., Kurtulmaz, Y.: Factorizations of matrices over projective-free rings. arXiv preprint arXiv:1406.1237, 2014, | MR
[8] Chen, H., Ungor, B., Halicioglu, S.: Very clean matrices over local rings. arXiv preprint arXiv:1406.1240, 2014,
[9] Diesl, A. J.: Classes of strongly clean rings. 2006, ProQuest, Ph.D. Thesis, University of California, Berkeley.. | MR
[10] Diesl, A. J.: Nil clean rings. J. Algebra, 383, 2013, 197-211, | DOI | MR | Zbl
[11] Evans, E. G.: Krull-Schmidt and cancellation over local rings. Pacific J. Math., 46, 1973, 115-121, | DOI | MR | Zbl
[12] Han, J., Nicholson, W. K.: Extensions of clean rings. Comm. Algebra, 29, 2011, 2589-2595, | DOI | MR
[13] Herstein, I. N.: Noncommutative rings, The Carus Mathematical Monographs. 15, 1968, Published by The Mathematical Association of America, Distributed by John Wiley and Sons, Inc., New York, 1968.. | MR | Zbl
[14] Lam, T. Y.: A first course in noncommutative rings. 131, 2001, Graduate Texts in Mathematics, Springer-Verlag, New York, | MR | Zbl
[15] Mesyan, Z.: The ideals of an ideal extension. J. Algebra Appl., 9, 2010, 407-431, | DOI | MR | Zbl
[16] Nicholson, W. K.: Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 229, 1977, 269-278, | DOI | MR | Zbl
[17] Nicholson, W. K.: Strongly clean rings and Fitting's lemma. Comm. Algebra, 27, 1999, 3583-3592, | DOI | MR | Zbl
[18] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit. Glasgow Math. J., 46, 2004, 227-236, | DOI | MR | Zbl
[19] Vaserstein, L. N.: Bass's first stable range condition. J. Pure Appl. Algebra, 34, 2, 1984, 319-330, | MR | Zbl