A note on normal generation and generation of groups
Communications in Mathematics, Tome 23 (2015) no. 1, pp. 1-11
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we study sets of normal generators of finitely presented residually $p$-finite groups. We show that if an infinite, finitely presented, residually $p$-finite group $G$ is normally generated by $g_1,\dots ,g_k$ with order $n_1,\dots ,n_k \in \{1,2,\dots \} \cup \{\infty \}$, then $$\beta _1^{(2)}(G) \leq k-1-\sum _{i=1}^{k} \frac 1{n_i}\,,$$ where $\beta _1^{(2)}(G)$ denotes the first $\ell ^2$-Betti number of $G$. We also show that any $k$-generated group with $\beta _1^{(2)}(G) \geq k-1-\varepsilon $ must have girth greater than or equal $1/\varepsilon $.
In this note we study sets of normal generators of finitely presented residually $p$-finite groups. We show that if an infinite, finitely presented, residually $p$-finite group $G$ is normally generated by $g_1,\dots ,g_k$ with order $n_1,\dots ,n_k \in \{1,2,\dots \} \cup \{\infty \}$, then $$\beta _1^{(2)}(G) \leq k-1-\sum _{i=1}^{k} \frac 1{n_i}\,,$$ where $\beta _1^{(2)}(G)$ denotes the first $\ell ^2$-Betti number of $G$. We also show that any $k$-generated group with $\beta _1^{(2)}(G) \geq k-1-\varepsilon $ must have girth greater than or equal $1/\varepsilon $.
Classification : 16S34, 46L10, 46L50
Keywords: group rings; $\ell ^2$-invariants; residually $p$-finite groups; normal generation
@article{COMIM_2015_23_1_a0,
     author = {Thom, Andreas},
     title = {A note on normal generation and generation of groups},
     journal = {Communications in Mathematics},
     pages = {1--11},
     year = {2015},
     volume = {23},
     number = {1},
     mrnumber = {3394074},
     zbl = {1362.20026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a0/}
}
TY  - JOUR
AU  - Thom, Andreas
TI  - A note on normal generation and generation of groups
JO  - Communications in Mathematics
PY  - 2015
SP  - 1
EP  - 11
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a0/
LA  - en
ID  - COMIM_2015_23_1_a0
ER  - 
%0 Journal Article
%A Thom, Andreas
%T A note on normal generation and generation of groups
%J Communications in Mathematics
%D 2015
%P 1-11
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a0/
%G en
%F COMIM_2015_23_1_a0
Thom, Andreas. A note on normal generation and generation of groups. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/COMIM_2015_23_1_a0/

[1] Aschenbrenner, M., Friedl, S.: 3-manifold groups are virtually residually $p$. 225, 1058, 2013, American mathematical society, | MR | Zbl

[2] Atiyah, M. F.: Elliptic operators, discrete groups and von Neumann algebras. Astérisque, 32, 33, 1976, 43-72, Colloque ``Analyse et Topologie'' en l'Honneur de Henri Cartan (Orsay, 1974). | MR | Zbl

[3] Baumslag, G.: Residually finite one-relator groups. Bull. Amer. Math. Soc., 73, 1967, 618-620, | DOI | MR | Zbl

[4] Cheeger, J., Gromov, M.: $L_2$-cohomology and group cohomology. Topology, 25, 2, 1986, 189-215, | DOI | MR

[5] Formanek, E.: A short proof of a theorem of Jennings. Proc. Amer. Math. Soc., 26, 1970, 405-407, | DOI | MR | Zbl

[6] Gruenberg, K.: Residual properties of infinite soluble groups. Proc. London Math. Soc. (3), 7, 1957, 29-62, | MR | Zbl

[7] Gruenberg, K.: The residual nilpotence of certain presentations of finite groups. Arch. Math., 13, 1962, 408-417, | DOI | MR | Zbl

[8] Jennings, S. A.: The group ring of a class of infinite nilpotent groups. Canad. J. Math., 7, 1955, 169-187, | DOI | MR | Zbl

[9] Lackenby, M.: Covering spaces of 3-orbifolds. Duke Math. J., 136, 1, 2007, 181-203, | DOI | MR | Zbl

[10] Lück, W.: Dimension theory of arbitrary modules over finite von Neumann algebras and $L^2$-Betti numbers. II. Applications to Grothendieck groups, $L^2$-Euler characteristics and Burnside groups. J. Reine Angew. Math., 496, 1998, 213-236, | MR | Zbl

[11] Lück, W.: $L\sp 2$-invariants: theory and applications to geometry and $K$-theory. 44, 2002, Springer-Verlag, Berlin, | MR

[12] Lück, W., Osin, D.: Approximating the first $L^2$-Betti number of residually finite groups. J. Topol. Anal., 3, 2, 2011, 153-160, | DOI | MR | Zbl

[13] Osin, D., Thom, A.: Normal generation and $\ell ^2$-Betti numbers of groups. Math. Ann., 355, 4, 2013, 1331-1347, | DOI | MR | Zbl

[14] Peterson, J., Thom, A.: Group cocycles and the ring of affiliated operators. Invent. Math., 185, 3, 2011, 561-592, | DOI | MR | Zbl

[15] Pichot, M.: Semi-continuity of the first $l^2$-Betti number on the space of finitely generated groups. Comment. Math. Helv., 81, 3, 2006, 643-652, | DOI | MR

[16] Platonov, V. P.: A certain problem for finitely generated groups. Dokl. Akad. Nauk USSR, 12, 1968, 492-494, | MR | Zbl