@article{COMIM_2014_22_2_a5,
author = {Groeger, Josua},
title = {Super {Wilson} {Loops} and {Holonomy} on {Supermanifolds}},
journal = {Communications in Mathematics},
pages = {185--211},
year = {2014},
volume = {22},
number = {2},
mrnumber = {3303138},
zbl = {1316.58004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a5/}
}
Groeger, Josua. Super Wilson Loops and Holonomy on Supermanifolds. Communications in Mathematics, Tome 22 (2014) no. 2, pp. 185-211. http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a5/
[1] Alday, L., Maldacena, J.: Gluon scattering amplitudes at strong coupling. JHEP, 2007, 06, 2007, | MR
[2] Alday, L., Roiban, R.: Scattering amplitudes, Wilson loops and the string/gauge theory correspondence. Phys. Reports, 468, 5, 2008, 153-211, | DOI | MR
[3] Ballmann, W.: Vector bundles and connections. 2002, Lecture notes, Universität Bonn,
[4] Bär, C.: Gauge theory. 2009, Lecture notes, Universität Potsdam,
[5] Belitsky, A.: Conformal anomaly of super Wilson loop. Nucl. Phys. B, 862, 2012, 430-449, | DOI | MR | Zbl
[6] Belitsky, A., Korchemsky, G., Sokatchev, E.: Are scattering amplitudes dual to super Wilson loops?. Nucl. Phys. B, 855, 2012, 333-360, | DOI | MR | Zbl
[7] Brandhuber, A., Heslop, P., Travaglini, G.: MHV amplitudes in $N=4$ super Yang-Mills and Wilson loops. Nucl. Phys. B, 794, 2008, 231-243, | DOI | MR
[8] Carmeli, C., Caston, L., Fioresi, and R.: Mathematical Foundations of Supersymmetry. 2011, European Mathematical Society, | MR
[9] Caron-Huot, S.: Notes on the scattering amplitude / Wilson loop duality. JHEP, 2011, 07, 2011, | MR | Zbl
[10] Deligne, P., Freed, D.: Supersolutions. Quantum Fields and Strings: A Course for Mathematicians, 1999, American Mathematical Society, | MR | Zbl
[11] Drummond, J., Korchemsky, G., Sokatchev, E.: Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B, 795, 2008, 385-408, | DOI | MR | Zbl
[12] Galaev, A.: Holonomy of supermanifolds. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 79, 2009, 47-78, | MR | Zbl
[13] Gorbatsevich, V., Onishchik, A., Vinberg, E.: Foundations of Lie Theory and Lie Transformation Groups. 1997, Springer, | MR | Zbl
[14] Groeger, J.: Holomorphic supercurves and supersymmetric sigma models. J. Math. Phys., 52, 12, 2011, | DOI | MR | Zbl
[15] Groeger, J.: Vertex operators of super Wilson loops. Phys. Rev. D, 86, 10, 2012, | DOI
[16] Hanisch, F.: Variational problems on supermanifolds. 2012, Dissertation, Universität Potsdam,
[17] Hélein, F.: A representation formula for maps on supermanifolds. J. Math. Phys., 49, 2, 2008, | DOI | MR | Zbl
[18] Hélein, F.: An introduction to supermanifolds and supersymmetry. Systèmes intégrables et théorie des champs quantiques, 2009, 103-157, Hermann,
[19] Khemar, I.: Supersymmetric harmonic maps into symmetric spaces. Journal of Geometry and Physics, 57, 8, 2007, 1601-1630, | MR | Zbl
[20] Leites, D.: Introduction to the theory of supermanifolds. Russian Math. Surveys, 35, 1, 1980, | DOI | MR | Zbl
[21] Mason, L., Skinner, D.: The complete planar $S$-matrix of $N=4$ SYM as a Wilson loop in twistor space. JHEP, 2010, 12, 2010, | MR
[22] Molotkov, V.: Infinite-dimensional $\mathbb{Z}^k_2$-supermanifolds. 1984, ICTP Preprints, IC/84/183,
[23] Monterde, J., Sánchez-Valenzuela, O.: Existence and uniqueness of solutions to superdifferential equations. Journal of Geometry and Physics, 10, 4, 1993, 315-343, | DOI | MR | Zbl
[24] Sachse, C.: A categorical formulation of superalgebra and supergeometry. 2008, Preprint, Max Planck Institute for Mathematics in the Sciences,
[25] Sachse, C., Wockel, C.: The diffeomorphism supergroup of a finite-dimensional supermanifold. Adv. Theor. Math. Phys., 15, 2, 2011, 285-323, | DOI | MR | Zbl
[26] Tennison, B.: Sheaf Theory. 1975, Cambridge University Press, | MR | Zbl
[27] Varadarajan, V.: Supersymmetry for Mathematicians: An Introduction. 2004, American Mathematical Society, | MR | Zbl
[28] Yamabe, H.: On an arcwise connected subgroup of a Lie group. Osaka Math. J., 2, 1, 1950, 13-14, | MR | Zbl