Keywords: nonholonomic mechanical systems; nonholonomic constraint submanifold; canonical distribution; reduced equations of motion; symmetries of nonholonomic systems; conservation laws; Chaplygin sleigh
@article{COMIM_2014_22_2_a4,
author = {\v{C}ech, Michal and Musilov\'a, Jana},
title = {Symmetries and currents in nonholonomic mechanics},
journal = {Communications in Mathematics},
pages = {159--184},
year = {2014},
volume = {22},
number = {2},
mrnumber = {3303137},
zbl = {1308.49045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a4/}
}
Čech, Michal; Musilová, Jana. Symmetries and currents in nonholonomic mechanics. Communications in Mathematics, Tome 22 (2014) no. 2, pp. 159-184. http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a4/
[1] Bahar, L.Y.: A unified approach to non-holonomic dynamics. Int. J. Non-Linear Mech., 35, 2000, 613-625, | DOI | MR
[2] Bloch, A.M., Baillieul, (with the collaboration of J., Marsden), P.E. Crouch and J.E.: Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics 24. 2003, Springer Science + Business Media, LLC, | MR
[3] Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems, Texts in Applied Mathematics 49. 2005, Springer Science + Business Media, Inc., New York, | DOI | MR
[4] Cantrijn, F.: Vector fields generating invariants for classical dissipative systems. J. Math. Phys., 23, 1982, 1589-1595, | DOI | MR | Zbl
[5] Čech, M., Musilová, J.: Symmetries and conservation laws for Chaplygin sleigh. Balkan J. Geom. Appl. Submitted..
[6] Chetaev, N.G.: On the Gauss principle. Izv. Kazan Fiz.-Mat. Obsc., 6, 1932–1933, 323-326, (in Russian).
[7] Monforte, J. Cortés: Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics 1793. 2002, Springer, Berlin, | DOI | MR
[8] Czudková, L., Musilová, J.: A practical application of the geometrical theory on fibred manifolds to a planimeter motion. Int. J. Non-Linear Mech., 50, 2012, 19-24.
[9] León, M. de, Marrero, J.C., Diego, D. Martín de: Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. J. Geom. Mech., 2, 2010, 159-198, (See also arXiv: 0801.4358v3 [mat-ph] 13 Nov 2009.). | DOI | MR
[10] Janová, J., Musilová, J.: Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion. Int. J. Non-Linear Mech., 44, 2009, 98-105, | DOI | Zbl
[11] Janová, J., Musilová, J.: The streetboard rider: an appealing problem in non-holonomic mechanics. Eur. J. Phys., 31, 2010, 333-345, | DOI
[12] Janová, J., Musilová, J.: Coupled rolling motion: considering rolling friction in non-holonomic mechanics. Eur. J. Phys., 32, 2011, 257-269, | DOI
[13] Janová, J., Musilová, J., Bartoš, J.: Coupled rolling motion: a student project in non-holonomic mechanics. Eur. J. Phys., 30, 2010, 1257-1269, | DOI
[14] Krupková, O.: Mechanical systems with nonholonomic constraints. J. Math. Phys., 38, 1997, 5098-5126, | DOI | MR
[15] Krupková, O.: Higher order mechanical systems with nonholonomic constraints. J. Math. Phys., 41, 2000, 5304-5324, | DOI | MR
[16] Krupková, O.: Recent results in the geometry of constrained systems. Rep. Math. Phys., 49, 2002, 269-278, | DOI | MR | Zbl
[17] Krupková, O.: Variational metric structures. Publ. Math. Debrecen, 62, 3–4, 2003, 461-495, | MR | Zbl
[18] Krupková, O.: Noether Theorem, 90 years on. XVII. International Fall Workshop, 2009, 159-170, American Institute of Physics,
[19] Krupková, O.: The nonholonomic variational principle. J. Phys. A: Math. Theor., 42, 2009, 185201 (40pp). | DOI | MR | Zbl
[20] Krupková, O.: The geometric mechanics on nonholonomic submanifolds. Comm. Math., 18, 2010, 51-77, | MR
[21] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with non-holonomic constraints. J. Phys. A: Math. Gen., 34, 2001, 3859-3875, | DOI | MR
[22] Krupková, O., Musilová, J.: Nonholonomic variational systems. Rep. Math. Phys., 55, 2, 2005, 211-220, | DOI | MR | Zbl
[23] Massa, E., Pagani, E.: Classical mechanics of non-holonomic systems: a geometric approach. Ann. Inst. Henri Poincaré, 55, 1991, 511-544, | MR
[24] Massa, E., Pagani, E.: A new look at classical mechanics of constrained systems. Ann. Inst. Henri Poincaré, 66, 1997, 1-36, | MR | Zbl
[25] Mráz, M., Musilová, J.: Variational compatibility of force laws in mechanics. Differential Geometry and its Applications, 1999, 553-560, Masaryk Univ., Brno, | MR
[26] Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. 1972, American Mathematical Society, Rhode Island,
[27] Novotný, J.: On the inverse variational problem in the classical mechanics. Proc. Conf. on Diff. Geom. and Its Appl. 1980, 1981, 189-195, Universita Karlova, Prague, | MR
[28] Popescu, P., Ida, Ch.: Nonlinear constraints in nonholonomic mechanics. arXiv: submit/1026356 [marh-ph] 20 Jul 2014.. | MR
[29] Roithmayr, C.M., Hodges, D.H.: Forces associated with non-linear non-holonomic constraint equations. Int. J. Non-Linear Mech., 45, 2010, 357-369, | DOI
[30] Rossi, O., Musilová, J.: On the inverse variational problem in nonholonomic mechanics. Comm. Math., 20, 1, 2012, 41-62, | MR | Zbl
[31] Rossi, O., Musilová, J.: The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles. J. Phys A: Math. Theor., 45, 2012, 255202. | MR
[32] Rossi, O., Paláček, R.: On the Zermelo problem in Riemannian manifolds. Balkan Journal of Geometry and Its Applications, 17, 2, 2012, 77-81, | MR
[33] Sarlet, W., Cantrijn, F.: Special symmetries for Lagrangian systems snd their analogues in nonconservative mechanics. Difrerential Geometry and its Applications. Proc. Conf. Nové Město na Moravě, Czechoslovakia, September 1983, 1984, 247-260, J.E. Purkyně University, Brno, | MR
[34] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems. J. Phys. A: Math. Gen., 28, 1995, 3253-3268, | DOI | MR | Zbl
[35] Sarlet, W., Saunders, D.J., Cantrijn, F.: A geometrical framework for the study of non-holonomic Lagrangian systems II. J. Phys. A: Math. Gen., 29, 1996, 4265-4274, | DOI | MR | Zbl
[36] Sarlet, W., Saunders, D.J., Cantrijn, F.: Adjoint symmetries and the generation of first integrals in non-holonomic mechanics. Journal of Geometry and Physics, 55, 2005, 207-225, | DOI | MR | Zbl
[37] Swaczyna, M.: Several examples of nonholonomic mechanical systems. Comm. Math., 19, 2011, 27-56, | MR
[38] Swaczyna, M., Volný, P.: Uniform projectile motion: Dynamics, symmetries and conservation laws. Rep. Math. Phys., 73, 2, 2014, 177-200, | DOI | MR | Zbl
[39] Udwadia, F.E.: Equations of motion for mechanical systems: A unified approach. Int. J. Non-Linear Mech., 31, 1996, 951-958, | DOI | Zbl
[40] Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-Linear Mech., 37, 2002, 1079-1090, | DOI | MR