Discontinuity of the Fuglede-Kadison determinant on a group von Neumann algebra
Communications in Mathematics, Tome 22 (2014) no. 2, pp. 141-149
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that in contrast to the case of the operator norm topology on the set of regular operators, the Fuglede-Kadison determinant is not continuous on isomorphisms in the group von Neumann algebra $\mathcal {N}(\mathbb {Z})$ with respect to the strong operator topology. Moreover, in the weak operator topology the determinant is not even continuous on isomorphisms given by multiplication with elements of $\mathbb {Z}[\mathbb {Z}]$. Finally, we define $T\in \mathcal {N}(\mathbb {Z})$ such that for each $\lambda \in \mathbb {R}$ the operator $T+\lambda \cdot {\mathrm{id}} _{l^{2}(\mathbb {Z})}$ is a self-adjoint weak isomorphism of determinant class but $\lim _{\lambda \to 0}\det (T+\lambda \cdot {\mathrm{id}} _{l^{2}(\mathbb {Z})})\neq \det (T)$.
We show that in contrast to the case of the operator norm topology on the set of regular operators, the Fuglede-Kadison determinant is not continuous on isomorphisms in the group von Neumann algebra $\mathcal {N}(\mathbb {Z})$ with respect to the strong operator topology. Moreover, in the weak operator topology the determinant is not even continuous on isomorphisms given by multiplication with elements of $\mathbb {Z}[\mathbb {Z}]$. Finally, we define $T\in \mathcal {N}(\mathbb {Z})$ such that for each $\lambda \in \mathbb {R}$ the operator $T+\lambda \cdot {\mathrm{id}} _{l^{2}(\mathbb {Z})}$ is a self-adjoint weak isomorphism of determinant class but $\lim _{\lambda \to 0}\det (T+\lambda \cdot {\mathrm{id}} _{l^{2}(\mathbb {Z})})\neq \det (T)$.
@article{COMIM_2014_22_2_a2,
author = {K\"uter, Benjamin},
title = {Discontinuity of the {Fuglede-Kadison} determinant on a group von {Neumann} algebra},
journal = {Communications in Mathematics},
pages = {141--149},
year = {2014},
volume = {22},
number = {2},
mrnumber = {3303135},
zbl = {06410231},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a2/}
}
Küter, Benjamin. Discontinuity of the Fuglede-Kadison determinant on a group von Neumann algebra. Communications in Mathematics, Tome 22 (2014) no. 2, pp. 141-149. http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a2/
[1] Fuglede, B., Kadison, R.V.: Determinant theory in finite factors. Ann. of Math., 55, 2, 1952, 520-530, | DOI | MR | Zbl
[2] Georgescu, C., Picioroaga, G.: Fuglede-Kadison determinants for operators in the von Neumann algebra of an equivalence relation. Proc. Amer. Math. Soc., 142, 2014, 173-180, | DOI | MR | Zbl
[3] Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras II. 1983, Academic Press, ISBN 0-1239-3302-1. | MR
[4] Lück, W.: $L^2$-Invariants: Theory and Applications to Geometry and K-Theory. 2002, Springer Verlag (Heidelberg), ISBN 978-3-540-43566-2. | MR | Zbl