Keywords: Absolutely continuous functions; Convex functions; Integral inequalities; Čebyšev functional; Jensen's inequality; Lebesgue norms; Mid-point inequalities; Trapezoid inequalities
@article{COMIM_2014_22_2_a0,
author = {Dragomir, Silvestru Sever},
title = {Bounds for {Convex} {Functions} of {\v{C}eby\v{s}ev} {Functional} {Via} {Sonin's} {Identity} with {Applications}},
journal = {Communications in Mathematics},
pages = {107--132},
year = {2014},
volume = {22},
number = {2},
mrnumber = {3303133},
zbl = {1308.26030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a0/}
}
TY - JOUR AU - Dragomir, Silvestru Sever TI - Bounds for Convex Functions of Čebyšev Functional Via Sonin's Identity with Applications JO - Communications in Mathematics PY - 2014 SP - 107 EP - 132 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a0/ LA - en ID - COMIM_2014_22_2_a0 ER -
Dragomir, Silvestru Sever. Bounds for Convex Functions of Čebyšev Functional Via Sonin's Identity with Applications. Communications in Mathematics, Tome 22 (2014) no. 2, pp. 107-132. http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a0/
[1] Cerone, P., Dragomir, S.S.: Some bounds in terms of $\Delta $-seminorms for Ostrowski-Grüss type inequalities. Soochow J. Math., 27, 4, 2001, 423-434, | MR | Zbl
[2] Cerone, P., Dragomir, S.S.: New bounds for the Čebyšev functional. App. Math. Lett., 18, 2005, 603-611, | DOI | MR | Zbl
[3] Cerone, P., Dragomir, S.S.: A refinement of the Grüss inequality and applications. Tamkang J. Math., 38, 1, 2007, 37-49, Preprint RGMIA Res. Rep. Coll. 5 (2) (2002), Art. 14. [online http://rgmia.vu.edu.au/v8n2.html] | MR | Zbl
[4] Cerone, P., Dragomir, S.S., Roumeliotis, J.: Grüss inequality in terms of $\Delta $-seminorms and applications. Integral Transforms Spec. Funct., 14, 3, 2003, 205-216, | DOI | MR | Zbl
[5] Chebyshev, P.L.: Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites. Proc. Math. Soc. Charkov, 2, 1882, 93-98,
[6] Cheng, X.-L., Sun, J.: Note on the perturbed trapezoid inequality. J. Ineq. Pure & Appl. Math., 3, 2, 2002, Art. 29. [online http://jipam.vu.edu.au/article.php?sid=181] | MR | Zbl
[7] Grüss, G.: Über das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_{a}^{b}f(x)g(x)\,{\rm d}x-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)\,{\rm d}x\int_{a}^{b}g(x)\,{\rm d}x$. Math. Z., 39, 1935, 215-226, | MR
[8] Li, X., Mohapatra, R.N., Rodriguez, R.S.: Grüss-type inequalities. J. Math. Anal. Appl., 267, 2, 2002, 434-443, | DOI | MR | Zbl
[9] Lupaş, A.: The best constant in an integral inequality. Mathematica (Cluj, Romania), 15 (38), 2, 1973, 219-222, | MR | Zbl
[10] Mercer, A.McD.: An improvement of the Grüss inequality. J. Inequal. Pure Appl. Math., 6, 4, 2005, Article 93, 4 pp. (electronic).. | MR | Zbl
[11] Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. 1993, Kluwer Academic Publishers, Dordrecht/Boston/London, | MR
[12] Ostrowski, A.M.: On an integral inequality. Aequat. Math., 4, 1970, 358-373, | DOI | MR | Zbl
[13] Pachpatte, B.G.: On Grüss like integral inequalities via Pompeiu's mean value theorem. J. Inequal. Pure Appl. Math., 6, 3, 2005, Article 82, 5 pp.. | MR | Zbl