Bounds for Convex Functions of Čebyšev Functional Via Sonin's Identity with Applications
Communications in Mathematics, Tome 22 (2014) no. 2, pp. 107-132 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some new bounds for the Čebyšev functional in terms of the Lebesgue norms $$ \biggl \Vert f-\frac {1}{b-a}\int _a^b f(t){\,\mathrm{d}t} \biggr \Vert _{[a,b],p} $$ and the $\Delta $-seminorms $$ \lVert f\rVert _{p}^{\Delta } := \biggl (\int _a^b \int _a^b |f(t)-f(s)|^{p}{\,\mathrm{d}t} {\,\mathrm{d}s} \biggr )^{\frac 1p} $$ are established. Applications for mid-point and trapezoid inequalities are provided as well.
Some new bounds for the Čebyšev functional in terms of the Lebesgue norms $$ \biggl \Vert f-\frac {1}{b-a}\int _a^b f(t){\,\mathrm{d}t} \biggr \Vert _{[a,b],p} $$ and the $\Delta $-seminorms $$ \lVert f\rVert _{p}^{\Delta } := \biggl (\int _a^b \int _a^b |f(t)-f(s)|^{p}{\,\mathrm{d}t} {\,\mathrm{d}s} \biggr )^{\frac 1p} $$ are established. Applications for mid-point and trapezoid inequalities are provided as well.
Classification : 25D10, 26D15
Keywords: Absolutely continuous functions; Convex functions; Integral inequalities; Čebyšev functional; Jensen's inequality; Lebesgue norms; Mid-point inequalities; Trapezoid inequalities
@article{COMIM_2014_22_2_a0,
     author = {Dragomir, Silvestru Sever},
     title = {Bounds for {Convex} {Functions} of {\v{C}eby\v{s}ev} {Functional} {Via} {Sonin's} {Identity} with {Applications}},
     journal = {Communications in Mathematics},
     pages = {107--132},
     year = {2014},
     volume = {22},
     number = {2},
     mrnumber = {3303133},
     zbl = {1308.26030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a0/}
}
TY  - JOUR
AU  - Dragomir, Silvestru Sever
TI  - Bounds for Convex Functions of Čebyšev Functional Via Sonin's Identity with Applications
JO  - Communications in Mathematics
PY  - 2014
SP  - 107
EP  - 132
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a0/
LA  - en
ID  - COMIM_2014_22_2_a0
ER  - 
%0 Journal Article
%A Dragomir, Silvestru Sever
%T Bounds for Convex Functions of Čebyšev Functional Via Sonin's Identity with Applications
%J Communications in Mathematics
%D 2014
%P 107-132
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a0/
%G en
%F COMIM_2014_22_2_a0
Dragomir, Silvestru Sever. Bounds for Convex Functions of Čebyšev Functional Via Sonin's Identity with Applications. Communications in Mathematics, Tome 22 (2014) no. 2, pp. 107-132. http://geodesic.mathdoc.fr/item/COMIM_2014_22_2_a0/

[1] Cerone, P., Dragomir, S.S.: Some bounds in terms of $\Delta $-seminorms for Ostrowski-Grüss type inequalities. Soochow J. Math., 27, 4, 2001, 423-434, | MR | Zbl

[2] Cerone, P., Dragomir, S.S.: New bounds for the Čebyšev functional. App. Math. Lett., 18, 2005, 603-611, | DOI | MR | Zbl

[3] Cerone, P., Dragomir, S.S.: A refinement of the Grüss inequality and applications. Tamkang J. Math., 38, 1, 2007, 37-49, Preprint RGMIA Res. Rep. Coll. 5 (2) (2002), Art. 14. [online http://rgmia.vu.edu.au/v8n2.html] | MR | Zbl

[4] Cerone, P., Dragomir, S.S., Roumeliotis, J.: Grüss inequality in terms of $\Delta $-seminorms and applications. Integral Transforms Spec. Funct., 14, 3, 2003, 205-216, | DOI | MR | Zbl

[5] Chebyshev, P.L.: Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites. Proc. Math. Soc. Charkov, 2, 1882, 93-98,

[6] Cheng, X.-L., Sun, J.: Note on the perturbed trapezoid inequality. J. Ineq. Pure & Appl. Math., 3, 2, 2002, Art. 29. [online http://jipam.vu.edu.au/article.php?sid=181] | MR | Zbl

[7] Grüss, G.: Über das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_{a}^{b}f(x)g(x)\,{\rm d}x-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)\,{\rm d}x\int_{a}^{b}g(x)\,{\rm d}x$. Math. Z., 39, 1935, 215-226, | MR

[8] Li, X., Mohapatra, R.N., Rodriguez, R.S.: Grüss-type inequalities. J. Math. Anal. Appl., 267, 2, 2002, 434-443, | DOI | MR | Zbl

[9] Lupaş, A.: The best constant in an integral inequality. Mathematica (Cluj, Romania), 15 (38), 2, 1973, 219-222, | MR | Zbl

[10] Mercer, A.McD.: An improvement of the Grüss inequality. J. Inequal. Pure Appl. Math., 6, 4, 2005, Article 93, 4 pp. (electronic).. | MR | Zbl

[11] Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. 1993, Kluwer Academic Publishers, Dordrecht/Boston/London, | MR

[12] Ostrowski, A.M.: On an integral inequality. Aequat. Math., 4, 1970, 358-373, | DOI | MR | Zbl

[13] Pachpatte, B.G.: On Grüss like integral inequalities via Pompeiu's mean value theorem. J. Inequal. Pure Appl. Math., 6, 3, 2005, Article 82, 5 pp.. | MR | Zbl