Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
Communications in Mathematics, Tome 22 (2014) no. 1, pp. 57-69 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we prove the existence of entropy solutions for the Dirichlet problem $$ (P)\begin {cases} -\mathrm{div} [{\omega }(x){\cal A} (x,u,{\nabla }u)]=f(x)-\mathrm{div} (G),\text {in }\Omega \\ u(x) = 0,\text {on }{\partial \Omega } \end {cases} $$ where $\Omega $ is a bounded open set of $\real ^N$, $N\geq 2$, $f \in L^1(\Omega )$ and $G/{\omega } \in [L^{p'}(\Omega , \omega )]^N$.
In this article, we prove the existence of entropy solutions for the Dirichlet problem $$ (P)\begin {cases} -\mathrm{div} [{\omega }(x){\cal A} (x,u,{\nabla }u)]=f(x)-\mathrm{div} (G),\text {in }\Omega \\ u(x) = 0,\text {on }{\partial \Omega } \end {cases} $$ where $\Omega $ is a bounded open set of $\real ^N$, $N\geq 2$, $f \in L^1(\Omega )$ and $G/{\omega } \in [L^{p'}(\Omega , \omega )]^N$.
Classification : 35A01, 35J25, 35J60, 35J62, 35J70
Keywords: degenerate elliptic equations; entropy solutions; weighted Sobolev spaces
@article{COMIM_2014_22_1_a4,
     author = {Cavalheiro, Albo Carlos},
     title = {Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$},
     journal = {Communications in Mathematics},
     pages = {57--69},
     year = {2014},
     volume = {22},
     number = {1},
     mrnumber = {3233727},
     zbl = {1302.35180},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a4/}
}
TY  - JOUR
AU  - Cavalheiro, Albo Carlos
TI  - Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
JO  - Communications in Mathematics
PY  - 2014
SP  - 57
EP  - 69
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a4/
LA  - en
ID  - COMIM_2014_22_1_a4
ER  - 
%0 Journal Article
%A Cavalheiro, Albo Carlos
%T Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
%J Communications in Mathematics
%D 2014
%P 57-69
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a4/
%G en
%F COMIM_2014_22_1_a4
Cavalheiro, Albo Carlos. Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a4/

[1] Bélinan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vasquez, J.L.: An $L^1$ theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 2, 1995, 241-273, | MR

[2] Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl., 152, 1988, 183-196, | MR

[3] Cavalheiro, A.C.: The solvability of Dirichlet problem for a class of degenerate elliptic equations with $L^1$-data. Applicable Analysis, 85, 8, 2006, 941-961, | MR | Zbl

[4] Cavalheiro, A.C.: Existence of solutions for some degenerate quasilinear elliptic equations. Le Matematiche, LXIII, II, 2008, 101-112, | MR | Zbl

[5] Piat, V. Chiadò, Cassano, F. Serra: Relaxation of degenerate variational integrals. Nonlinear Anal., 22, 1994, 409-429, | DOI | MR

[6] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. PDEs, 7, 1982, 77-116, | DOI | MR | Zbl

[7] Folland, G.B.: Real Analysis. 1984, Wiley-Interscience, New York, | MR | Zbl

[8] Garcia-Cuerva, J., Francia, J.L. Rubio de: Weighted Norm Inequalities and Related Topics. 116, 1985, North-Holland Mathematics Studies, | MR

[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. 1993, Oxford Math. Monographs, Clarendon Press, | MR | Zbl

[10] Kufner, A., John, O., Fučík, S.: Function Spaces. 1977, Noordhoof International Publishing, Leyden, | MR

[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc., 165, 1972, 207-226, | DOI | MR | Zbl

[12] Stein, E.: Harmonic Analysis. 1993, Princeton University Press, | MR | Zbl

[13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. 1986, Academic Press, San Diego, | MR | Zbl

[14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics. 1736, 2000, Springer-Verlag, | MR