Keywords: degenerate elliptic equations; entropy solutions; weighted Sobolev spaces
@article{COMIM_2014_22_1_a4,
author = {Cavalheiro, Albo Carlos},
title = {Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$},
journal = {Communications in Mathematics},
pages = {57--69},
year = {2014},
volume = {22},
number = {1},
mrnumber = {3233727},
zbl = {1302.35180},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a4/}
}
Cavalheiro, Albo Carlos. Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a4/
[1] Bélinan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vasquez, J.L.: An $L^1$ theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 2, 1995, 241-273, | MR
[2] Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl., 152, 1988, 183-196, | MR
[3] Cavalheiro, A.C.: The solvability of Dirichlet problem for a class of degenerate elliptic equations with $L^1$-data. Applicable Analysis, 85, 8, 2006, 941-961, | MR | Zbl
[4] Cavalheiro, A.C.: Existence of solutions for some degenerate quasilinear elliptic equations. Le Matematiche, LXIII, II, 2008, 101-112, | MR | Zbl
[5] Piat, V. Chiadò, Cassano, F. Serra: Relaxation of degenerate variational integrals. Nonlinear Anal., 22, 1994, 409-429, | DOI | MR
[6] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. PDEs, 7, 1982, 77-116, | DOI | MR | Zbl
[7] Folland, G.B.: Real Analysis. 1984, Wiley-Interscience, New York, | MR | Zbl
[8] Garcia-Cuerva, J., Francia, J.L. Rubio de: Weighted Norm Inequalities and Related Topics. 116, 1985, North-Holland Mathematics Studies, | MR
[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. 1993, Oxford Math. Monographs, Clarendon Press, | MR | Zbl
[10] Kufner, A., John, O., Fučík, S.: Function Spaces. 1977, Noordhoof International Publishing, Leyden, | MR
[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc., 165, 1972, 207-226, | DOI | MR | Zbl
[12] Stein, E.: Harmonic Analysis. 1993, Princeton University Press, | MR | Zbl
[13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. 1986, Academic Press, San Diego, | MR | Zbl
[14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics. 1736, 2000, Springer-Verlag, | MR