Keywords: Diophantine equations; $S$-unit equations; $S$-Diophantine tuples
@article{COMIM_2014_22_1_a3,
author = {Luca, Florian and Ziegler, Volker},
title = {A note on the number of $S${-Diophantine} quadruples},
journal = {Communications in Mathematics},
pages = {49--55},
year = {2014},
volume = {22},
number = {1},
mrnumber = {3233726},
zbl = {06359722},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a3/}
}
Luca, Florian; Ziegler, Volker. A note on the number of $S$-Diophantine quadruples. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 49-55. http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a3/
[1] Amoroso, F., Viada, E.: Small points on subvarieties of a torus. Duke Math. J., 150, 3, 2009, 407-442, | DOI | MR | Zbl
[2] Bugeaud, Y., Luca, F.: A quantitative lower bound for the greatest prime factor of $(ab+1)(bc+1)(ca+1)$. Acta Arith., 114, 3, 2004, 275-294, | DOI | MR | Zbl
[3] Corvaja, P., Zannier, U.: On the greatest prime factor of $(ab+1)(ac+1)$. Proc. Amer. Math. Soc., 131, 6, 2003, 1705-1709, (electronic). | DOI | MR | Zbl
[4] Erdős, P., Turan, P.: On a Problem in the Elementary Theory of Numbers. Amer. Math. Monthly, 41, 10, 1934, 608-611, | DOI | MR | Zbl
[5] Evertse, J.-H.: On equations in $S$-units, the Thue-Mahler equation. Invent. Math., 75, 3, 1984, 561-584, | DOI | MR
[6] Evertse, J.-H., Ferretti, R. G.: A further improvement of the quantitative subspace theorem. Ann. of Math. (2), 177, 2, 2013, 513-590, | DOI | MR
[7] Evertse, J.-H., Schlickewei, H. P., Schmidt, W. M.: Linear equations in variables which lie in a multiplicative group. Ann. of Math. (2), 155, 3, 2002, 807-836, | DOI | MR | Zbl
[8] Győry, K., Sárközy, A., Stewart, C. L.: On the number of prime factors of integers of the form $ab+1$. Acta Arith., 74, 4, 1996, 365-385, | MR | Zbl
[9] Hernández, S., Luca, F.: On the largest prime factor of $(ab+1)(ac+1)(bc+1)$. Bol. Soc. Mat. Mexicana (3), 9, 2, 2003, 235-244, | MR | Zbl
[10] Luca, F.: On the greatest common divisor of $u-1$ and $v-1$ with $u$ and $v$ near $S$-units. Monatsh. Math., 146, 3, 2005, 239-256, | DOI | MR
[11] Mihăilescu, P.: Primary cyclotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math., 572, 2004, 167-195, | MR | Zbl
[12] Sárközy, A., Stewart, C. L.: On divisors of sums of integers. II. J. Reine Angew. Math., 365, 1986, 171-191, | MR | Zbl
[13] Sárközy, A., Stewart, C. L.: On divisors of sums of integers. V. Pacific J. Math., 166, 2, 1994, 373-384, | DOI | MR | Zbl
[14] Sárközy, A., Stewart, C. L.: On prime factors of integers of the form $ab+1$. Publ. Math. Debrecen, 56, 3--4, 2000, 559-573, Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday.. | MR | Zbl
[15] Stewart, C. L., Tijdeman, R.: On the greatest prime factor of $(ab+1)(ac+1)(bc+1)$. Acta Arith., 79, 1, 1997, 93-101, | MR | Zbl
[16] Szalay, L., Ziegler, V.: $S$-diophantine quadruples with $S={2,q}$. (in preperation).
[17] Szalay, L., Ziegler, V.: On an $S$-unit variant of Diophantine $m$-tuples. Publ. Math. Debrecen, 83, 1--2, 2013, 97-121, | DOI | MR | Zbl
[18] Szalay, L., Ziegler, V.: $S$-diophantine quadruples with two primes congruent 3 modulo 4. Integers, 13, 2013, Paper No. A80, 9pp.. | MR