Stratonovich-Weyl correspondence for the Jacobi group
Communications in Mathematics, Tome 22 (2014) no. 1, pp. 31-48
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct and study a Stratonovich-Weyl correspondence for the holomorphic representations of the Jacobi group.
We construct and study a Stratonovich-Weyl correspondence for the holomorphic representations of the Jacobi group.
Classification : 22E10, 22E27, 32M05, 32M10, 32M15, 46E22, 81S10
Keywords: Berezin quantization; Berezin transform; quasi-Hermitian Lie group; unitary representation; holomorphic representation; reproducing kernel Hilbert space; Jacobi group; Stratonovich-Weyl correspondence; coadjoint orbit
@article{COMIM_2014_22_1_a2,
     author = {Cahen, Benjamin},
     title = {Stratonovich-Weyl correspondence for the {Jacobi} group},
     journal = {Communications in Mathematics},
     pages = {31--48},
     year = {2014},
     volume = {22},
     number = {1},
     mrnumber = {3233725},
     zbl = {1304.22005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a2/}
}
TY  - JOUR
AU  - Cahen, Benjamin
TI  - Stratonovich-Weyl correspondence for the Jacobi group
JO  - Communications in Mathematics
PY  - 2014
SP  - 31
EP  - 48
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a2/
LA  - en
ID  - COMIM_2014_22_1_a2
ER  - 
%0 Journal Article
%A Cahen, Benjamin
%T Stratonovich-Weyl correspondence for the Jacobi group
%J Communications in Mathematics
%D 2014
%P 31-48
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a2/
%G en
%F COMIM_2014_22_1_a2
Cahen, Benjamin. Stratonovich-Weyl correspondence for the Jacobi group. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 31-48. http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a2/

[1] Ali, S.T., Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys., 17, 4, 2005, 391-490, | DOI | MR | Zbl

[2] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains. Function spaces, interpolation theory and related topics (Lund, 2000) 151--211. 2002, De Gruyter, Berlin, | MR

[3] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13, 3--4, 2002, 165-181, | MR

[4] Berceanu, S.: A holomorphic representation of the Jacobi algebra. Rev. Math. Phys., 18, 2006, 163-199, | DOI | MR | Zbl

[5] Berceanu, S., Gheorghe, A.: On the geometry of Siegel-Jacobi domains. Int. J. Geom. Methods Mod. Phys., 8, 2011, 1783-1798, | MR | Zbl

[6] Berezin, F.A.: Quantization. Math. USSR Izv., 8, 5, 1974, 1109-1165, | Zbl

[7] Berezin, F.A.: Quantization in complex symmetric domains. Math. USSR Izv., 9, 2, 1975, 341-379, | DOI

[8] Berndt, R., Böcherer, S.: Jacobi forms and discrete series representations of the Jacobi group. Math. Z., 204, 1990, 13-44, | DOI | MR | Zbl

[9] Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group, Progress in Mathematics 163. 1998, Birkhäuser Verlag, Basel, | MR

[10] Cahen, B.: Berezin quantization for discrete series. Beiträge Algebra Geom., 51, 2010, 301-311, | MR

[11] Cahen, B.: Stratonovich-Weyl correspondence for compact semisimple Lie groups. Rend. Circ. Mat. Palermo, 59, 2010, 331-354, | DOI | MR | Zbl

[12] Cahen, B.: Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno), 47, 2011, 41-58, | MR | Zbl

[13] Cahen, B.: Berezin Quantization and Holomorphic Representations. Rend. Sem. Mat. Univ. Padova, 129, 2013, 277-297, | DOI | MR | Zbl

[14] Cahen, B.: Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 52, 2013, 35-48, | MR | Zbl

[15] Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C.: Relativistic quantum kinematics in the Moyal representation. J. Phys. A: Math. Gen., 23, 1990, 901-933, | DOI | MR | Zbl

[16] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials. J. Funct. Anal., 204, 2003, 157-195, | DOI | MR | Zbl

[17] Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C.: Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys., 31, 1990, 2664-2671, | DOI | MR

[18] Folland, B.: Harmonic Analysis in Phase Space. 1989, Princeton Univ. Press, | MR | Zbl

[19] Gracia-Bondìa, J.M.: Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), 93--114, Contemp. Math., 134. 1992, Amer. Math. Soc., Providence, RI, | MR

[20] Gracia-Bondìa, J.M., V¸rilly, J.C.: The Moyal Representation for Spin. Ann. Physics, 190, 1989, 107-148, | MR

[21] Kirillov, A.A.: Lectures on the Orbit Method, Graduate Studies in Mathematics, Vol. 64. 2004, American Mathematical Society, Providence, Rhode Island, | DOI | MR

[22] Neeb, K-H.: Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28. 2000, Walter de Gruyter, Berlin, New-York, | MR

[23] Nomura, T.: Berezin Transforms and Group representations. J. Lie Theory, 8, 1998, 433-440, | MR | Zbl

[24] Ørsted, B., Zhang, G.: Weyl Quantization and Tensor Products of Fock and Bergman Spaces. Indiana Univ. Math. J., 43, 2, 1994, 551-583, | DOI | MR | Zbl

[25] Peetre, J., Zhang, G.: A weighted Plancherel formula III. The case of a hyperbolic matrix ball. Collect. Math., 43, 1992, 273-301, | MR

[26] Satake, I.: Algebraic structures of symmetric domains. 1971, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, | MR

[27] Stratonovich, R.L.: On distributions in representation space. Soviet Physics. JETP, 4, 1957, 891-898, | MR

[28] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators. Commun. Math. Phys., 164, 3, 1994, 563-597, | DOI | MR | Zbl

[29] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces. Manuscripta Math., 97, 1998, 371-388, | DOI | MR | Zbl