Keywords: Berezin quantization; Berezin transform; quasi-Hermitian Lie group; unitary representation; holomorphic representation; reproducing kernel Hilbert space; Jacobi group; Stratonovich-Weyl correspondence; coadjoint orbit
@article{COMIM_2014_22_1_a2,
author = {Cahen, Benjamin},
title = {Stratonovich-Weyl correspondence for the {Jacobi} group},
journal = {Communications in Mathematics},
pages = {31--48},
year = {2014},
volume = {22},
number = {1},
mrnumber = {3233725},
zbl = {1304.22005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a2/}
}
Cahen, Benjamin. Stratonovich-Weyl correspondence for the Jacobi group. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 31-48. http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a2/
[1] Ali, S.T., Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys., 17, 4, 2005, 391-490, | DOI | MR | Zbl
[2] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains. Function spaces, interpolation theory and related topics (Lund, 2000) 151--211. 2002, De Gruyter, Berlin, | MR
[3] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13, 3--4, 2002, 165-181, | MR
[4] Berceanu, S.: A holomorphic representation of the Jacobi algebra. Rev. Math. Phys., 18, 2006, 163-199, | DOI | MR | Zbl
[5] Berceanu, S., Gheorghe, A.: On the geometry of Siegel-Jacobi domains. Int. J. Geom. Methods Mod. Phys., 8, 2011, 1783-1798, | MR | Zbl
[6] Berezin, F.A.: Quantization. Math. USSR Izv., 8, 5, 1974, 1109-1165, | Zbl
[7] Berezin, F.A.: Quantization in complex symmetric domains. Math. USSR Izv., 9, 2, 1975, 341-379, | DOI
[8] Berndt, R., Böcherer, S.: Jacobi forms and discrete series representations of the Jacobi group. Math. Z., 204, 1990, 13-44, | DOI | MR | Zbl
[9] Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group, Progress in Mathematics 163. 1998, Birkhäuser Verlag, Basel, | MR
[10] Cahen, B.: Berezin quantization for discrete series. Beiträge Algebra Geom., 51, 2010, 301-311, | MR
[11] Cahen, B.: Stratonovich-Weyl correspondence for compact semisimple Lie groups. Rend. Circ. Mat. Palermo, 59, 2010, 331-354, | DOI | MR | Zbl
[12] Cahen, B.: Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno), 47, 2011, 41-58, | MR | Zbl
[13] Cahen, B.: Berezin Quantization and Holomorphic Representations. Rend. Sem. Mat. Univ. Padova, 129, 2013, 277-297, | DOI | MR | Zbl
[14] Cahen, B.: Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 52, 2013, 35-48, | MR | Zbl
[15] Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C.: Relativistic quantum kinematics in the Moyal representation. J. Phys. A: Math. Gen., 23, 1990, 901-933, | DOI | MR | Zbl
[16] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials. J. Funct. Anal., 204, 2003, 157-195, | DOI | MR | Zbl
[17] Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C.: Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys., 31, 1990, 2664-2671, | DOI | MR
[18] Folland, B.: Harmonic Analysis in Phase Space. 1989, Princeton Univ. Press, | MR | Zbl
[19] Gracia-Bondìa, J.M.: Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), 93--114, Contemp. Math., 134. 1992, Amer. Math. Soc., Providence, RI, | MR
[20] Gracia-Bondìa, J.M., V¸rilly, J.C.: The Moyal Representation for Spin. Ann. Physics, 190, 1989, 107-148, | MR
[21] Kirillov, A.A.: Lectures on the Orbit Method, Graduate Studies in Mathematics, Vol. 64. 2004, American Mathematical Society, Providence, Rhode Island, | DOI | MR
[22] Neeb, K-H.: Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28. 2000, Walter de Gruyter, Berlin, New-York, | MR
[23] Nomura, T.: Berezin Transforms and Group representations. J. Lie Theory, 8, 1998, 433-440, | MR | Zbl
[24] Ørsted, B., Zhang, G.: Weyl Quantization and Tensor Products of Fock and Bergman Spaces. Indiana Univ. Math. J., 43, 2, 1994, 551-583, | DOI | MR | Zbl
[25] Peetre, J., Zhang, G.: A weighted Plancherel formula III. The case of a hyperbolic matrix ball. Collect. Math., 43, 1992, 273-301, | MR
[26] Satake, I.: Algebraic structures of symmetric domains. 1971, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, | MR
[27] Stratonovich, R.L.: On distributions in representation space. Soviet Physics. JETP, 4, 1957, 891-898, | MR
[28] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators. Commun. Math. Phys., 164, 3, 1994, 563-597, | DOI | MR | Zbl
[29] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces. Manuscripta Math., 97, 1998, 371-388, | DOI | MR | Zbl