Keywords: tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures
@article{COMIM_2014_22_1_a1,
author = {Qi, Xuerong and Cao, Linfen and Li, Xingxiao},
title = {New {hyper-K\"aahler} structures on tangent bundles},
journal = {Communications in Mathematics},
pages = {13--30},
year = {2014},
volume = {22},
number = {1},
mrnumber = {3233724},
zbl = {06359720},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a1/}
}
Qi, Xuerong; Cao, Linfen; Li, Xingxiao. New hyper-Käahler structures on tangent bundles. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 13-30. http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a1/
[1] Anastasiei, M.: Locally conformal Kähler structures on tangent manifold of a space form. Libertas Math., 19, 1999, 71-76, | MR
[2] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. 2002, Progr. Math. Birkhäuser, Boston, | MR | Zbl
[3] Bogdanovich, S.A., Ermolitski, A.A.: On almost hyperHermitian structures on Riemannian manifolds and tangent bundles. Cent. Eur. J. Math., 2, 5, 2004, 615-623, | DOI | MR
[4] Calabi, E.: Métriques kähleriennes et fibrés holomophes. Ann. Sci. École Norm. Sup., 12, 1979, 269-294, | MR
[5] Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math., 96, 1972, 413-443, | DOI | MR | Zbl
[6] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math., 210, 1962, 73-88, | MR | Zbl
[7] Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. J. Reine Angew. Math., 250, 1971, 124-129, | MR | Zbl
[8] Li, X.X., Qi, X.R.: A note on some metrics on tangent bundles and unit tangent sphere bundles. J. Math. Res. Exposition, 28, 4, 2008, 829-838, | MR | Zbl
[9] Munteanu, M.I.: Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold. Mediterr. J. Math., 5, 2008, 43-59, | DOI | MR | Zbl
[10] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, | DOI | MR | Zbl
[11] Nagano, T.: Isometries on complex-product spaces. Tensor, 9, 1959, 47-61, | MR | Zbl
[12] Oproiu, V.: A Kähler Einstein structure on the tangent bundle of a space form. Int. J. Math. Math. Sci., 25, 2001, 183-195, | DOI | MR | Zbl
[13] Oproiu, V.: Hyper-Kähler structures on the tangent bundle of a Kähler manifold. Balkan J. Geom. Appl., 15, 1, 2010, 104-119, | MR
[14] Oproiu, V., Papaghiuc, N.: General natural Einstein Kähler structures on tangent bundles. Differential Geom. Appl., 27, 2009, 384-392, | DOI | MR | Zbl
[15] Oproiu, V., Poroşniuc, D.D.: A class of Kähler Einstein structures on the cotangent bundle. Publ. Math. Debrecen, 66, 3--4, 2005, 457-478, | MR | Zbl
[16] Ornea, L., Piccinni, P.: Locally conformal Kähler structures in quaternionic geometry. Trans. Amer. Math. Soc., 349, 2, 1997, 641-655, | DOI | MR | Zbl
[17] Poroşniuc, D.D.: A class of locally symmetric Kähler Einstein structures on the nonzero cotangent bundle of a space form. Balkan J. Geom. Appl., 9, 2, 2004, 68-81, | MR | Zbl
[18] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J., 10, 1958, 338-354, | DOI | MR | Zbl
[19] Tachibana, S., Okumura, M.: On the almost-complex structure of tangent bundles of Riemannian spaces. Tôhoku Math. J., 14, 2, 1962, 156-161, | DOI | MR | Zbl
[20] Tahara, M., Vanhecke, L., Watanabe, Y.: New structures on tangent bundles. Note Mat., 18, 1, 1998, 131-141, | MR | Zbl
[21] Vaisman, I.: On locally conformal almost Kähler manifolds. Israel J. Math., 24, 1976, 338-351, | DOI | MR
[22] Zayatuev, B.V.: On a class of almost-Hermitian structures on tangent bundles. Math. Notes, 76, 5, 2004, 682-688, | DOI | MR