New hyper-Käahler structures on tangent bundles
Communications in Mathematics, Tome 22 (2014) no. 1, pp. 13-30 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(M,g,J)$ be an almost Hermitian manifold, then the tangent bundle $TM$ carries a class of naturally defined almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$. In this paper we give conditions under which these almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$ are locally conformal hyper-Kähler. As an application, a family of new hyper-\kr structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle $T_1 M$, we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature.
Let $(M,g,J)$ be an almost Hermitian manifold, then the tangent bundle $TM$ carries a class of naturally defined almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$. In this paper we give conditions under which these almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$ are locally conformal hyper-Kähler. As an application, a family of new hyper-\kr structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle $T_1 M$, we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature.
Classification : 53C15, 53C26
Keywords: tangent bundles; locally conformal hyper-Kähler structures; almost contact metric 3-structures; Sasakian 3-structures
@article{COMIM_2014_22_1_a1,
     author = {Qi, Xuerong and Cao, Linfen and Li, Xingxiao},
     title = {New {hyper-K\"aahler} structures on tangent bundles},
     journal = {Communications in Mathematics},
     pages = {13--30},
     year = {2014},
     volume = {22},
     number = {1},
     mrnumber = {3233724},
     zbl = {06359720},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a1/}
}
TY  - JOUR
AU  - Qi, Xuerong
AU  - Cao, Linfen
AU  - Li, Xingxiao
TI  - New hyper-Käahler structures on tangent bundles
JO  - Communications in Mathematics
PY  - 2014
SP  - 13
EP  - 30
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a1/
LA  - en
ID  - COMIM_2014_22_1_a1
ER  - 
%0 Journal Article
%A Qi, Xuerong
%A Cao, Linfen
%A Li, Xingxiao
%T New hyper-Käahler structures on tangent bundles
%J Communications in Mathematics
%D 2014
%P 13-30
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a1/
%G en
%F COMIM_2014_22_1_a1
Qi, Xuerong; Cao, Linfen; Li, Xingxiao. New hyper-Käahler structures on tangent bundles. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 13-30. http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a1/

[1] Anastasiei, M.: Locally conformal Kähler structures on tangent manifold of a space form. Libertas Math., 19, 1999, 71-76, | MR

[2] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. 2002, Progr. Math. Birkhäuser, Boston, | MR | Zbl

[3] Bogdanovich, S.A., Ermolitski, A.A.: On almost hyperHermitian structures on Riemannian manifolds and tangent bundles. Cent. Eur. J. Math., 2, 5, 2004, 615-623, | DOI | MR

[4] Calabi, E.: Métriques kähleriennes et fibrés holomophes. Ann. Sci. École Norm. Sup., 12, 1979, 269-294, | MR

[5] Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math., 96, 1972, 413-443, | DOI | MR | Zbl

[6] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math., 210, 1962, 73-88, | MR | Zbl

[7] Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. J. Reine Angew. Math., 250, 1971, 124-129, | MR | Zbl

[8] Li, X.X., Qi, X.R.: A note on some metrics on tangent bundles and unit tangent sphere bundles. J. Math. Res. Exposition, 28, 4, 2008, 829-838, | MR | Zbl

[9] Munteanu, M.I.: Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold. Mediterr. J. Math., 5, 2008, 43-59, | DOI | MR | Zbl

[10] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, | DOI | MR | Zbl

[11] Nagano, T.: Isometries on complex-product spaces. Tensor, 9, 1959, 47-61, | MR | Zbl

[12] Oproiu, V.: A Kähler Einstein structure on the tangent bundle of a space form. Int. J. Math. Math. Sci., 25, 2001, 183-195, | DOI | MR | Zbl

[13] Oproiu, V.: Hyper-Kähler structures on the tangent bundle of a Kähler manifold. Balkan J. Geom. Appl., 15, 1, 2010, 104-119, | MR

[14] Oproiu, V., Papaghiuc, N.: General natural Einstein Kähler structures on tangent bundles. Differential Geom. Appl., 27, 2009, 384-392, | DOI | MR | Zbl

[15] Oproiu, V., Poroşniuc, D.D.: A class of Kähler Einstein structures on the cotangent bundle. Publ. Math. Debrecen, 66, 3--4, 2005, 457-478, | MR | Zbl

[16] Ornea, L., Piccinni, P.: Locally conformal Kähler structures in quaternionic geometry. Trans. Amer. Math. Soc., 349, 2, 1997, 641-655, | DOI | MR | Zbl

[17] Poroşniuc, D.D.: A class of locally symmetric Kähler Einstein structures on the nonzero cotangent bundle of a space form. Balkan J. Geom. Appl., 9, 2, 2004, 68-81, | MR | Zbl

[18] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J., 10, 1958, 338-354, | DOI | MR | Zbl

[19] Tachibana, S., Okumura, M.: On the almost-complex structure of tangent bundles of Riemannian spaces. Tôhoku Math. J., 14, 2, 1962, 156-161, | DOI | MR | Zbl

[20] Tahara, M., Vanhecke, L., Watanabe, Y.: New structures on tangent bundles. Note Mat., 18, 1, 1998, 131-141, | MR | Zbl

[21] Vaisman, I.: On locally conformal almost Kähler manifolds. Israel J. Math., 24, 1976, 338-351, | DOI | MR

[22] Zayatuev, B.V.: On a class of almost-Hermitian structures on tangent bundles. Math. Notes, 76, 5, 2004, 682-688, | DOI | MR