Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph
Communications in Mathematics, Tome 22 (2014) no. 1, pp. 1-12 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(X,M,\ast )$ be a fuzzy metric space endowed with a graph $G$ such that the set $V(G)$ of vertices of $G$ coincides with $X$. Then we define a $G$-fuzzy contraction on $X$ and prove some results concerning the existence and uniqueness of fixed point for such mappings. As a consequence of the main results we derive some extensions of known results from metric into fuzzy metric spaces. Some examples are given which illustrate the results.
Let $(X,M,\ast )$ be a fuzzy metric space endowed with a graph $G$ such that the set $V(G)$ of vertices of $G$ coincides with $X$. Then we define a $G$-fuzzy contraction on $X$ and prove some results concerning the existence and uniqueness of fixed point for such mappings. As a consequence of the main results we derive some extensions of known results from metric into fuzzy metric spaces. Some examples are given which illustrate the results.
Classification : 47H10, 54A40, 54E40, 54H25
Keywords: graph; partial order; fuzzy metric space; contraction; fixed point
@article{COMIM_2014_22_1_a0,
     author = {Shukla, Satish},
     title = {Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph},
     journal = {Communications in Mathematics},
     pages = {1--12},
     year = {2014},
     volume = {22},
     number = {1},
     mrnumber = {3233723},
     zbl = {1298.54039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a0/}
}
TY  - JOUR
AU  - Shukla, Satish
TI  - Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph
JO  - Communications in Mathematics
PY  - 2014
SP  - 1
EP  - 12
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a0/
LA  - en
ID  - COMIM_2014_22_1_a0
ER  - 
%0 Journal Article
%A Shukla, Satish
%T Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph
%J Communications in Mathematics
%D 2014
%P 1-12
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a0/
%G en
%F COMIM_2014_22_1_a0
Shukla, Satish. Fixed point theorems of $G$-fuzzy contractions in fuzzy metric spaces endowed with a graph. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/COMIM_2014_22_1_a0/

[1] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64, 1994, 395-399, | DOI | MR | Zbl

[2] George, A., Veeramani, P.: On some results of analysis for fuzzy metric spaces. Fuzzy Sets Systems, 90, 1997, 365-368, | DOI | MR | Zbl

[3] Petruşel, A., Rus, I.A.: Fixed point theorems in ordered $L$-spaces. Proc. Amer. Math. Soc., 134, 2006, 411-418, MR2176009 (2006g:47097). | DOI | MR | Zbl

[4] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math., 10, 1960, 313-334, | DOI | MR | Zbl

[5] Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logics, vol. 8. 2000, Kluwer Academic Publishers, Dordrecht, Boston, London, | MR

[6] Bojor, F.: Fixed points of Kannan mappings in metric spaces endowed with a graph. An. Şt. Univ. Ovidius Constanţa, 20, 1, 2012, 31-40, DOI: 10.2478/v10309-012-0003-x. | MR | Zbl

[7] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika, 11, 1975, 336-344, | MR | Zbl

[8] Nieto, J.J., Pouso, R.L., Rodríguez-López, R.: Fixed point theorems in ordered abstract spaces. Proc. Amer. Math. Soc., 135, 2007, 2505--2517, MR2302571. | DOI | MR | Zbl

[9] Nieto, J.J., Rodríguez-López, R.: Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order, 22, 2005, 223-239, | DOI | MR | Zbl

[10] Nieto, J.J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sinica, English Ser., 2007, 2205-2212, | DOI | MR | Zbl

[11] Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc., 136, 2008, 1359-1373, | DOI | MR | Zbl

[12] Zadeh, L.A.: Fuzzy sets. Information and Control, 89, 1965, 338-353, | DOI | MR | Zbl

[13] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27, 1988, 385-389, | DOI | MR | Zbl

[14] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and its Applications. Vol. 536. 2001, Kluwer Academic Publishers, Dordrecht, Boston, London, | MR

[15] Gregori, V., Sapena, A.: On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125, 2002, 245-252, | DOI | MR | Zbl

[16] Kirk, W.A., Srinavasan, P.S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory, 4, 2003, 79-89, | MR