Keywords: higher order Diophantine equations; method of infinite ascent; Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$
@article{COMIM_2013_21_2_a5,
author = {Jena, Susil Kumar},
title = {Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$},
journal = {Communications in Mathematics},
pages = {173--178},
year = {2013},
volume = {21},
number = {2},
mrnumber = {3159288},
zbl = {06296536},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a5/}
}
Jena, Susil Kumar. Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$. Communications in Mathematics, Tome 21 (2013) no. 2, pp. 173-178. http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a5/
[1] Arif, S.A., Abu Muriefah, F.S.: The Diophantine equation $x^2 + 3^m = y^n$. Int. J. Math. Math. Sci., 21, 3, 1998, 619-620. | MR | Zbl
[2] Arif, S.A., Abu Muriefah, F.S.: On the Diophantine equation $x^2 +2^k =y^n$ II. Arab J. Math. Sci., 7, 2, 2001, 67-71. | MR | Zbl
[3] Abu Muriefah, F.S., Luca, F., Togbé, A.: On the Diophantine equation $x^2 +5^a 13^b = y^n$. Glasg. Math. J., 50, 1, 2008, 175-181. | MR | Zbl
[4] Bérczes, A., Pink, I.: On the Diophantine equation $x^2+p^{2k}=y^n$. Archiv der Mathematik, 91, 6, 2008, 505-517. | DOI | MR | Zbl
[5] Bérczes, A., Pink, I.: On the Diophantine equation $x^2 +d^{2l+1} =y^n$. Glasg. Math. J., 54, 2, 2012, 415-428. | MR | Zbl
[6] Bugeaud, Y., Muriefah, F.S. Abu: The Diophantine equation $x^2 + c = y^n$: a brief overview. Rev. Colomb. Mat., 40, 1, 2006, 31-37. | MR
[7] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to Exponential Diophantine equations II: The Lebesgue-Nagell equation. Compositio Mathematica, 142, 2006, 31-62. | DOI | MR | Zbl
[8] Chao, K.: On the Diophantine equation $x^2 = y^n + 1, xy\not =0$. Sci. Sinica, 14, 1965, 457-460. | MR
[9] Cohn, J.H.E.: The diophantine equation $x^2 +2^k =y^n$. Arch. Math. (Basel), 59, 4, 1992, 341-344. | DOI | MR
[10] Cohn, J.H.E.: The Diophantine equation $x^2 + C = y^n$. Acta Arith., 65, 4, 1993, 367-381. | MR
[11] Goins, E., Luca, F., Togbé, A.: On the Diophantine equation $x^2 +2^\alpha 5^\beta 13^\gamma = y^n$. ANTS VIII Proceedings: A. J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011, 2008, 430-442. | MR | Zbl
[12] Jena, S.K.: Method of Infinite Ascent applied on $mA^6 + nB^3 = C^2$. Math. Student, 77, 2008, 239-246. | MR | Zbl
[13] Le, M.: Diophantine equation $x^2 + 2^m = y^n$. Chinese Sci. Bull., 42, 18, 1997, 1515-1517. | DOI | MR | Zbl
[14] Lebesgue, V.A.: Sur l'impossibilité en nombres entiers de l'équation $x^m = y^2 + 1$. Nouv. Ann. Math., 99, 1850, 178-181, (French).
[15] Ljunggren, W.: Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen. Ark. Mat., 29A, 13, 1943, 1-11, (German). | MR | Zbl
[16] Luca, F.: On the equation $ x^2 + 2^a\cdot 3^b = y^n$. Int. J. Math. Math. Sci., 29, 4, 2002, 239-244. | Zbl
[17] Luca, F., Togbé, A.: On the Diophantine equation $x^2 +2^a 5^b = y^n$. Int. J. Number Theory, 4, 6, 2008, 973-979. | DOI | MR
[18] Mignotte, M., de Weger, B.M.M.: On the Diophantine equations $x^2 + 74 = y^5$ and $x^2 + 86 = y^5$. Glasgow Math. J., 38, 1, 1996, 77-85. | MR
[19] Nagell, T.: Sur l'impossibilité de quelques équations à deux indéterminées. Norsk. Mat. Forensings Sknifter, 13, 1923, 65-82, (French).
[20] Nagell, T.: Contributions to the theory of Diophantine equations of the second degree with two unknowns. Nova Acta Soc. Sci. Upsal. Ser (4), 16, 2, 1955, 38-38. | MR
[21] Pink, I., Rábai, Zs.: On the Diophantine equation $x^2 + 5^k 17^l = y^n$. Commun. Math., 19, 1, 2011, 1-9. | MR
[22] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations. Indag. Math. (N.S.), 17, 1, 2006, 103-114. | DOI | MR | Zbl
[23] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms. Publ. Math. Debrecen, 71, 3-4, 2007, 349-374. | MR | Zbl
[24] Zhu, H., Le, M.: On some generalized Lebesgue-Nagell equations. J. Number Theory, 131, 3, 2011, 458-469. | DOI | MR | Zbl