Keywords: Reproducing kernel; Toeplitz operator; quantum plane; second quantization; creation and annihilation operators
@article{COMIM_2013_21_2_a3,
author = {Sontz, Stephen Bruce},
title = {A {Reproducing} {Kernel} and {Toeplitz} {Operators} in the {Quantum} {Plane}},
journal = {Communications in Mathematics},
pages = {137--160},
year = {2013},
volume = {21},
number = {2},
mrnumber = {3159286},
zbl = {06296534},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a3/}
}
Sontz, Stephen Bruce. A Reproducing Kernel and Toeplitz Operators in the Quantum Plane. Communications in Mathematics, Tome 21 (2013) no. 2, pp. 137-160. http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a3/
[1] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc., 108, 1950, 337-404. | DOI | MR | Zbl
[2] Bargmann, V.: On a Hilbert space of analytic functions and its associated integral transform. I. Commun. Pure Appl. Math., 14, 1961, 187-214. | DOI | MR
[3] Baz, M. El, Fresneda, R., Gazeau, J-P., Hassouni, Y.: Coherent state quantization of paragrassmann algebras. J. Phys. A: Math. Theor., 43, 2010, 385202 (15pp). Also see the Erratum for this article in arXiv:1004.4706v3. | MR | Zbl
[4] Gazeau, J-P.: Coherent States in Quantum Physics. 2009, Wiley-VCH.
[5] Kassel, C.: Quantum Groups. 1995, Springer. | MR | Zbl
[6] Khalkhali, M.: Basic Noncommutative Geometry. 2009, European Math. Soc.. | MR | Zbl
[7] Reed, M., Simon, B.: Mathematical Methods of Modern Physics, Vol. I, Functional Analysis. 1972, Academic Press.
[8] Saitoh, S.: Theory of reproducing kernels and its applications, Pitman Research Notes, Vol. 189. 1988, Longman Scientific & Technical, Essex. | MR
[9] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part I: Reproducing Kernels, Geometric Methods in Physics. XXXI Workshop 2012. Trends in Mathematics, 2013, 47-63, arXiv:1204.1033v3. | MR
[10] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part II: Toeplitz Operators. Journal of Operator Theory. To appear. arXiv:1205.5493.