Control Systems on the Orthogonal Group SO(4)
Communications in Mathematics, Tome 21 (2013) no. 2, pp. 107-128
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.
We classify the left-invariant control affine systems evolving on the orthogonal group $SO(4)$. The equivalence relation under consideration is detached feedback equivalence. Each possible number of inputs is considered; both the homogeneous and inhomogeneous systems are covered. A complete list of class representatives is identified and controllability of each representative system is determined.
Classification : 22E60, 93B05, 93B17, 93B27
Keywords: left-invariant control system; detached feedback equivalence; orthogonal group
@article{COMIM_2013_21_2_a1,
     author = {Adams, Ross M. and Biggs, Rory and Remsing, Claudiu C.},
     title = {Control {Systems} on the {Orthogonal} {Group} {SO(4)}},
     journal = {Communications in Mathematics},
     pages = {107--128},
     year = {2013},
     volume = {21},
     number = {2},
     mrnumber = {3159284},
     zbl = {1287.93021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a1/}
}
TY  - JOUR
AU  - Adams, Ross M.
AU  - Biggs, Rory
AU  - Remsing, Claudiu C.
TI  - Control Systems on the Orthogonal Group SO(4)
JO  - Communications in Mathematics
PY  - 2013
SP  - 107
EP  - 128
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a1/
LA  - en
ID  - COMIM_2013_21_2_a1
ER  - 
%0 Journal Article
%A Adams, Ross M.
%A Biggs, Rory
%A Remsing, Claudiu C.
%T Control Systems on the Orthogonal Group SO(4)
%J Communications in Mathematics
%D 2013
%P 107-128
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a1/
%G en
%F COMIM_2013_21_2_a1
Adams, Ross M.; Biggs, Rory; Remsing, Claudiu C. Control Systems on the Orthogonal Group SO(4). Communications in Mathematics, Tome 21 (2013) no. 2, pp. 107-128. http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a1/

[1] Adams, R.M., Biggs, R., Remsing, C.C.: On the equivalence of control systems on the orthogonal group SO(4). Recent Researches in Automatic Control, Systems Science and Communications, 2012, 54-59, WSEAS Press. | MR

[2] Adams, R.M., Biggs, R., Remsing, C.C.: Equivalence of control systems on the Euclidean group SE(2). Control Cybernet., 41, 2012, 513-524. | MR

[3] Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. 2004, Springer. | MR | Zbl

[4] Aron, A., Moş, I., Csaky, A., Puta, M.: An optimal control problem on the Lie group SO(4). Int. J. Geom. Methods Mod. Phys., 5, 2008, 319-327. | DOI | MR | Zbl

[5] Biggs, J.D., Holderbaum, W.: Singularities of optimal control problems on some six dimensional Lie groups. IEEE Trans. Automat. Control, 52, 2007, 1027-1038. | DOI | MR

[6] Biggs, R., Remsing, C.C.: A category of control systems. An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368. | MR | Zbl

[7] Biggs, R., Remsing, C.C.: A note on the affine subspaces of three-dimensional Lie algebras. Bul. Acad. Ştiinţe Repub. Mold. Mat., 3, 2012, 45-52. | MR

[8] Biggs, R., Remsing, C.C.: On the equivalence of cost-extended control systems on Lie groups. Recent Researches in Automatic Control, Systems Science and Communications, 2012, 60-65, WSEAS Press.

[9] Biggs, R., Remsing, C.C.: Control affine systems on semisimple three-dimensional Lie groups. An. Ştiinţe. Univ. Al. I. Cuza Iaşi. Mat., 59, 2013, 399-414.

[10] Biggs, R., Remsing, C.C.: Cost-extended control systems on Lie groups. Mediterr. J. Math., To appear in Mediterr. J. Math. DOI: 10.1007/s00009-013-0355-0.

[11] Biggs, R., Remsing, C.C.: Equivalence of control systems on the pseudo-orthogonal group $SO(2,1)_0$. preprint.

[12] Biggs, R., Remsing, C.C.: On the equivalence of control systems on Lie groups. preprint.

[13] Birtea, P., Caşu, I., Raţiu, T.S., Turhan, M.: Stability of equilibria for the $\mathfrak{so}(4)$ free rigid body. J. Nonlinear Sci., 22, 2012, 187-212. | DOI | MR

[14] Bogoyavlensky, O.I.: Integrable Euler equations on SO(4) and their physical applications. Commun. Math. Phys., 93, 1984, 417-436. | DOI | MR

[15] D'Alessandro, D.: The optimal control problem on SO(4) and its applications to quantum control. IEEE Trans. Automat. Control, 47, 2002, 87-92. | DOI | MR

[16] Isidori, A.: Nonlinear Control Systems (Third Edition). 1995, Springer.

[17] Jakubczyk, B.: Equivalence and invariants of nonlinear control systems. Nonlinear Controllability and Optimal Control, 1990, 177-218, Marcel Dekker. | MR | Zbl

[18] Jovanović, B.: Non-holonomic geodesic flows on Lie groups and the integrable Suslov problem on SO(4). J. Phys. A: Math. Gen., 31, 1998, 1415-1422. | DOI | MR | Zbl

[19] Jurdjevic, V.: Geometric Control Theory. 1997, Cambridge University Press. | MR | Zbl

[20] Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups. J. Diff. Equations, 12, 1972, 313-329. | DOI | MR | Zbl

[21] Knapp, A. W.: Lie Groups Beyond an Introduction (Second Edition). 2005, Birkhäuser. | MR

[22] Komarov, I.V., Kuznetsov, V.B.: Kowalewski's top on the Lie algebras $\mathfrak{o} (4)$, $\mathfrak{e} (3)$ and $\mathfrak{o} (3,1)$. J. Phys. A: Math. Gen., 23, 1990, 841-846. | DOI | MR

[23] Linton, C., Holderbaum, W., Biggs, J.: Rigid body trajectories in different 6D spaces. ISRN Math. Phys., 2012. | DOI

[24] Nijmeijer, H., Schaft, A. van der: Nonlinear Dynamical Control Systems. 1996, Springer. | MR

[25] Respondek, W., Tall, I.A.: Feedback equivalence of nonlinear control systems: a survey on formal approach. Chaos in Automatic Control, 2006, 137-262, CRC Press. | MR | Zbl

[26] Sachkov, Y.L.: Control theory on Lie groups. J. Math. Sci., 156, 2009, 381-439. | DOI | MR | Zbl

[27] Sokolov, V.V., Wolf, T.: Integrable quadratic classical Hamiltonians on $\mathfrak{so} (4)$ and $\mathfrak{so} (1,3)$. J. Phys. A: Math. Gen., 39, 2006, 1915-1926. | DOI | MR

[28] Sussmann, H.J.: Lie brackets, real analyticity and geometric control. Differential Geometric Control Theory, 1983, 1-116, Birkhäuser. | MR | Zbl