Structure equations on generalized Finsler manifolds
Communications in Mathematics, Tome 21 (2013) no. 2, pp. 97-106 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we generalize the classical structure equations of Riemannian geometry to generalized Finsler manifolds.
In this paper we generalize the classical structure equations of Riemannian geometry to generalized Finsler manifolds.
Classification : 53C05, 53C22
Keywords: structure equations; Finsler manifold; Ehresmann connection
@article{COMIM_2013_21_2_a0,
     author = {P\'ek, Johanna},
     title = {Structure equations on generalized {Finsler} manifolds},
     journal = {Communications in Mathematics},
     pages = {97--106},
     year = {2013},
     volume = {21},
     number = {2},
     mrnumber = {3159283},
     zbl = {06296531},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a0/}
}
TY  - JOUR
AU  - Pék, Johanna
TI  - Structure equations on generalized Finsler manifolds
JO  - Communications in Mathematics
PY  - 2013
SP  - 97
EP  - 106
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a0/
LA  - en
ID  - COMIM_2013_21_2_a0
ER  - 
%0 Journal Article
%A Pék, Johanna
%T Structure equations on generalized Finsler manifolds
%J Communications in Mathematics
%D 2013
%P 97-106
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a0/
%G en
%F COMIM_2013_21_2_a0
Pék, Johanna. Structure equations on generalized Finsler manifolds. Communications in Mathematics, Tome 21 (2013) no. 2, pp. 97-106. http://geodesic.mathdoc.fr/item/COMIM_2013_21_2_a0/

[1] Crampin, M.: On horizontal distributions on the tangent bundle of a differentiable manifold. J. London Math. Soc., 3, 2, 1971, 178-182. | DOI | MR | Zbl

[2] Crampin, M.: Connections of Berwald type. Publ. Math. Debrecen, 57, 2000, 455-473. | MR | Zbl

[3] León, M. de, Rodrigues, P.R.: Methods of Differential Geometry in Analytical Mechanics. 1989, North-Holland (Amsterdam). | MR | Zbl

[4] Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology Vol. I. 1972, Academic Press, New York. | Zbl

[5] Grifone, J.: Structure presque tangente et connexions I. Ann. Inst. Fourier, Grenoble, 22, 1, 1972, 287-334. | DOI | MR | Zbl

[6] Lovas, R.L., Pék, J., Szilasi, J.: Ehresmann connections, metrics and good metric derivatives. Advanced Studies in Pure Mathematics, 48, 2007, 263-308, Finsler Geometry, Sapporo 2005 – In Memory of Makoto Matsumoto. | MR | Zbl

[7] Matsumoto, M.: Foundations of Finsler Geometry and Special Finsler Spaces. 1986, Kaiseisha Press, Otsu. | MR | Zbl

[8] Martinez, E., Cariñena, J.F., Sarlet, W.: Derivations of differential forms along the tangent bundle projection. Diff. Geom. Appl., 2, 1992, 17-43. | DOI | MR | Zbl

[9] Miron, R.: Metrical Finsler structures and metrical Finsler connections. J. Math. Kyoto Univ., 23, 1983, 219-224. | MR | Zbl

[10] Mestdag, T., Szilasi, J., Tóth, V.: On the geometry of generalized metrics. Publ. Math. Debrecen, 62, 2003, 511-545. | MR | Zbl

[11] Moór, A.: Entwicklung einer Geometrie der allgemeinen metrischen Linienelementräume. Acta Sci. Math. Szeged, 17, 1956, 85-120. | MR | Zbl

[12] Moór, A.: Eine Verallgemeinerung der metrischen Übertragung in allgemeinen metrischen Räumen. Publ. Math. Debrecen, 10, 1963, 145-150. | MR

[13] Petersen, P.: Riemannian Geometry. 1968, Springer, Berlin.

[14] Szilasi, J.: A Setting for Spray and Finsler Geometry. Handbook of Finsler Geometry, Vol. 2, 2003, 1182-1426, Kluwer Academic Publishers, Dordrecht. | MR | Zbl

[15] Vanstone, J.R.: A generalization of Finsler Geometry. Canad. J. Math., 14, 1962, 87-112. | DOI | MR | Zbl