Diophantine approximation and special Liouville numbers
Communications in Mathematics, Tome 21 (2013) no. 1, pp. 39-76 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$. The approach relies on results on the connection between the set of all $s$-adic expansions ($s\geq 2$) of $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$ and their associated approximation constants. As an application, explicit construction of real numbers $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$ with prescribed approximation properties are deduced and illustrated by Matlab plots.
This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$. The approach relies on results on the connection between the set of all $s$-adic expansions ($s\geq 2$) of $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$ and their associated approximation constants. As an application, explicit construction of real numbers $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$ with prescribed approximation properties are deduced and illustrated by Matlab plots.
Classification : 11H06, 11J13, 11J81
Keywords: convex geometry; lattices; Liouville numbers; successive minima
@article{COMIM_2013_21_1_a3,
     author = {Schleischitz, Johannes},
     title = {Diophantine approximation and special {Liouville} numbers},
     journal = {Communications in Mathematics},
     pages = {39--76},
     year = {2013},
     volume = {21},
     number = {1},
     mrnumber = {3067121},
     zbl = {06202724},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a3/}
}
TY  - JOUR
AU  - Schleischitz, Johannes
TI  - Diophantine approximation and special Liouville numbers
JO  - Communications in Mathematics
PY  - 2013
SP  - 39
EP  - 76
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a3/
LA  - en
ID  - COMIM_2013_21_1_a3
ER  - 
%0 Journal Article
%A Schleischitz, Johannes
%T Diophantine approximation and special Liouville numbers
%J Communications in Mathematics
%D 2013
%P 39-76
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a3/
%G en
%F COMIM_2013_21_1_a3
Schleischitz, Johannes. Diophantine approximation and special Liouville numbers. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 39-76. http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a3/

[1] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. 1987, North-Holland Verlag, | MR | Zbl

[2] Jarník, V.: Contribution to the theory of linear homogeneous diophantine approximation. Czechoslovak Math. J., 4, 79, 1954, 330-353, | MR

[3] Moshchevitin, N.G.: Proof of W.M. Schmidt's conjecture concerning successive minima of a lattice. J. London Math. Soc., 2012, doi: 10.1112/jlms/jdr076, 12 Mar 2012. | MR

[4] Roy, D.: Diophantine approximation in small degree. 2004, Number theory 269--285, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI. | MR | Zbl

[5] Schmidt, W.M., Summerer, L.: Parametric geometry of numbers and applications. Acta Arithm., 140, 1, 2009, | DOI | MR | Zbl

[6] Schmidt, W.M., Summerer, L.: Diophantine approximation and parametric geometry of numbers. to appear in Monatshefte für Mathematik. | MR | Zbl

[7] Waldschmidt, M.: Report on some recent advances in Diophantine approximation. 2009,