Keywords: convex geometry; lattices; Liouville numbers; successive minima
@article{COMIM_2013_21_1_a3,
author = {Schleischitz, Johannes},
title = {Diophantine approximation and special {Liouville} numbers},
journal = {Communications in Mathematics},
pages = {39--76},
year = {2013},
volume = {21},
number = {1},
mrnumber = {3067121},
zbl = {06202724},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a3/}
}
Schleischitz, Johannes. Diophantine approximation and special Liouville numbers. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 39-76. http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a3/
[1] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. 1987, North-Holland Verlag, | MR | Zbl
[2] Jarník, V.: Contribution to the theory of linear homogeneous diophantine approximation. Czechoslovak Math. J., 4, 79, 1954, 330-353, | MR
[3] Moshchevitin, N.G.: Proof of W.M. Schmidt's conjecture concerning successive minima of a lattice. J. London Math. Soc., 2012, doi: 10.1112/jlms/jdr076, 12 Mar 2012. | MR
[4] Roy, D.: Diophantine approximation in small degree. 2004, Number theory 269--285, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI. | MR | Zbl
[5] Schmidt, W.M., Summerer, L.: Parametric geometry of numbers and applications. Acta Arithm., 140, 1, 2009, | DOI | MR | Zbl
[6] Schmidt, W.M., Summerer, L.: Diophantine approximation and parametric geometry of numbers. to appear in Monatshefte für Mathematik. | MR | Zbl
[7] Waldschmidt, M.: Report on some recent advances in Diophantine approximation. 2009,