Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
Communications in Mathematics, Tome 21 (2013) no. 1, pp. 31-38 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian.
For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian.
Classification : 58J50
Keywords: hypersurface with constant mean curvature; the stability operator; Hodge Laplacian; rough Laplacian
@article{COMIM_2013_21_1_a2,
     author = {Ma, Bingqing and Huang, Guangyue},
     title = {Eigenvalue relationships between {Laplacians} of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$},
     journal = {Communications in Mathematics},
     pages = {31--38},
     year = {2013},
     volume = {21},
     number = {1},
     mrnumber = {3067120},
     zbl = {06202723},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a2/}
}
TY  - JOUR
AU  - Ma, Bingqing
AU  - Huang, Guangyue
TI  - Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
JO  - Communications in Mathematics
PY  - 2013
SP  - 31
EP  - 38
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a2/
LA  - en
ID  - COMIM_2013_21_1_a2
ER  - 
%0 Journal Article
%A Ma, Bingqing
%A Huang, Guangyue
%T Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
%J Communications in Mathematics
%D 2013
%P 31-38
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a2/
%G en
%F COMIM_2013_21_1_a2
Ma, Bingqing; Huang, Guangyue. Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a2/

[1] Alencar, H., Carmo, M. do, Colares, A. G.: Stable hypersurfaces with constant scalar curvature. Math. Z., 213, 1993, 117-131, | DOI | MR | Zbl

[2] Barbosa, J. L., Carmo, M. do, Eschenburg, M.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z., 197, 1988, 123-138, | DOI | MR

[3] Cao, L., Li, H.: $r$-Minimal submanifolds in space forms. Ann. Global Anal. Geom., 32, 2007, 311-341, | DOI | MR | Zbl

[4] Cheng, Q.-M.: First eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc., 136, 2008, 3309-3318, | DOI | MR

[5] Chern, S. S.: Minimal Submanifolds in a Riemannian Manifold (mimeographed). 1968, University of Kansas, Lawrence, | MR

[6] Soufi, A. El, Ilias, S.: Second eigenvalue of Schrödinger operators, mean curvature. Commun. Math. Phys., 208, 2000, 761-770, | DOI | MR

[7] Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann., 305, 1996, 665-672, | DOI | MR | Zbl

[8] Li, H., Wang, X.: Second eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc., 140, 2012, 291-307, | DOI | MR | Zbl

[9] Savo, A.: Index bounds for minimal hypersurfaces of the sphere. Indiana Univ. Math. J., 59, 2010, 823-837, | DOI | MR | Zbl

[10] Simons, J.: Minimal varieties in Riemannian manifolds. Ann. of Math., 88, 2, 1968, 62-105, | DOI | MR | Zbl

[11] Wu, C.: New characterization of the Clifford tori, the Veronese surface. Arch. Math. (Basel), 61, 1993, 277-284, | DOI | MR