Keywords: hypersurface with constant mean curvature; the stability operator; Hodge Laplacian; rough Laplacian
@article{COMIM_2013_21_1_a2,
author = {Ma, Bingqing and Huang, Guangyue},
title = {Eigenvalue relationships between {Laplacians} of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$},
journal = {Communications in Mathematics},
pages = {31--38},
year = {2013},
volume = {21},
number = {1},
mrnumber = {3067120},
zbl = {06202723},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a2/}
}
TY - JOUR
AU - Ma, Bingqing
AU - Huang, Guangyue
TI - Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
JO - Communications in Mathematics
PY - 2013
SP - 31
EP - 38
VL - 21
IS - 1
UR - http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a2/
LA - en
ID - COMIM_2013_21_1_a2
ER -
%0 Journal Article
%A Ma, Bingqing
%A Huang, Guangyue
%T Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$
%J Communications in Mathematics
%D 2013
%P 31-38
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a2/
%G en
%F COMIM_2013_21_1_a2
Ma, Bingqing; Huang, Guangyue. Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a2/
[1] Alencar, H., Carmo, M. do, Colares, A. G.: Stable hypersurfaces with constant scalar curvature. Math. Z., 213, 1993, 117-131, | DOI | MR | Zbl
[2] Barbosa, J. L., Carmo, M. do, Eschenburg, M.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z., 197, 1988, 123-138, | DOI | MR
[3] Cao, L., Li, H.: $r$-Minimal submanifolds in space forms. Ann. Global Anal. Geom., 32, 2007, 311-341, | DOI | MR | Zbl
[4] Cheng, Q.-M.: First eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc., 136, 2008, 3309-3318, | DOI | MR
[5] Chern, S. S.: Minimal Submanifolds in a Riemannian Manifold (mimeographed). 1968, University of Kansas, Lawrence, | MR
[6] Soufi, A. El, Ilias, S.: Second eigenvalue of Schrödinger operators, mean curvature. Commun. Math. Phys., 208, 2000, 761-770, | DOI | MR
[7] Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann., 305, 1996, 665-672, | DOI | MR | Zbl
[8] Li, H., Wang, X.: Second eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc., 140, 2012, 291-307, | DOI | MR | Zbl
[9] Savo, A.: Index bounds for minimal hypersurfaces of the sphere. Indiana Univ. Math. J., 59, 2010, 823-837, | DOI | MR | Zbl
[10] Simons, J.: Minimal varieties in Riemannian manifolds. Ann. of Math., 88, 2, 1968, 62-105, | DOI | MR | Zbl
[11] Wu, C.: New characterization of the Clifford tori, the Veronese surface. Arch. Math. (Basel), 61, 1993, 277-284, | DOI | MR