Keywords: cocalibrated $G_2$-manifolds; connections with torsion
@article{COMIM_2013_21_1_a0,
author = {Friedrich, Thomas},
title = {Cocalibrated $G_2$-manifolds with {Ricci} flat characteristic connection},
journal = {Communications in Mathematics},
pages = {1--13},
year = {2013},
volume = {21},
number = {1},
mrnumber = {3067118},
zbl = {06202721},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a0/}
}
Friedrich, Thomas. Cocalibrated $G_2$-manifolds with Ricci flat characteristic connection. Communications in Mathematics, Tome 21 (2013) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/COMIM_2013_21_1_a0/
[1] Agricola, I., Ferreira, A.C.: Einstein manifolds with skew torsion. to appear.
[2] Agricola, I., Friedrich, Th.: On the holonomy of connections with skew-symmetric torsion. Math. Ann., 328, 2004, 711-748, | DOI | MR | Zbl
[3] Agricola, I., Friedrich, Th.: The Casimir operator of a metric connection with skew-symmetric torsion. J. Geom. Phys., 50, 2004, 188-204, | DOI | MR | Zbl
[4] Agricola, I., Friedrich, Th.: A note on flat connections with antisymmetric torsion. Diff. Geom. its Appl., 28, 2010, 480-487, | DOI | MR
[5] Apostolov, V., Armstrong, J., Draghici, T.: Local rigidity of certain classes of almost Kähler 4-manifolds. Math. Ann., 323, 2002, 633-666, | DOI | MR | Zbl
[6] Apostolov, V., Draghici, T., Moroianu, A.: A splitting theorem for Kähler manifolds whose Ricci tensors have constant eigenvalues. Internat. J. Math., 12, 2001, 769-789, | DOI | MR | Zbl
[7] Friedrich, Th.: G$_2$-manifolds with parallel characteristic torsion. J. Diff. Geom. Appl., 25, 2007, 632-648, | DOI | MR | Zbl
[8] Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math., 6, 2002, 303-336, | MR | Zbl
[9] Friedrich, Th., Ivanov, S.: Killing spinor equation in dimension 7 and geometry of integrable G$_2$-manifolds. J. Geom. Phys., 48, 2003, 1-11, | DOI | MR
[10] Grantcharov, D., Grantcharov, G., Poon, Y.S.: Calabi-Yau connections with torsion on toric bundles. J. Differential Geom., 78, 2008, 13-32, | MR | Zbl
[11] LeBrun, C.: Explicit self-dual metrics on CP2 # ... # CP2. J. Differential Geom., 34, 1991, 223-253, | MR