Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics
Communications in Mathematics, Tome 20 (2012) no. 2, pp. 137-145 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.
In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.
Classification : 53C07, 53C80, 70S05
Keywords: jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations
@article{COMIM_2012_20_2_a5,
     author = {Oan\u{a}, Alexandru and Neagu, Mircea},
     title = {Distinguished {Riemann-Hamilton} geometry in the polymomentum electrodynamics},
     journal = {Communications in Mathematics},
     pages = {137--145},
     year = {2012},
     volume = {20},
     number = {2},
     mrnumber = {3032809},
     zbl = {06165040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a5/}
}
TY  - JOUR
AU  - Oană, Alexandru
AU  - Neagu, Mircea
TI  - Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics
JO  - Communications in Mathematics
PY  - 2012
SP  - 137
EP  - 145
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a5/
LA  - en
ID  - COMIM_2012_20_2_a5
ER  - 
%0 Journal Article
%A Oană, Alexandru
%A Neagu, Mircea
%T Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics
%J Communications in Mathematics
%D 2012
%P 137-145
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a5/
%G en
%F COMIM_2012_20_2_a5
Oană, Alexandru; Neagu, Mircea. Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 137-145. http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a5/

[1] Asanov, G. S.: Jet extension of Finslerian gauge approach. Fortschr. Phys., 38, 8, 1990, 571-610, | DOI | MR | Zbl

[2] Atanasiu, Gh., Neagu, M.: Canonical nonlinear connections in the multi-time Hamilton geometry. Balkan J. Geom. Appl., 14, 2, 2009, 1-12, | MR | Zbl

[3] Christodoulou, D., Francaviglia, M., Tulczyjew, W. M.: General relativity as a generalized Hamiltonian system. J. Gen. Relativ. Gravit., 10, 1979, 567-579, | DOI | MR | Zbl

[4] Chruściński, D.: Hamiltonian structure for classical electrodynamics of a point particle. Rep. Math. Phys., 41, 1, 1998, 13-48, | DOI | MR | Zbl

[5] Coriasco, S., Ferraris, M., Francaviglia, M.: Non linear relativistic electrodynamics. Geometria, Fisica-Matematica e outros Ensaios -- volume in honour of A. Ribeiro Gomes, 1998, 101-118, Coimbra,

[6] Dickey, L. A.: Solitons Equations and Hamiltonian systems. 1991, Advanced Series in Mathematical Physics 12, World Scientific, Singapore, Chapter 17: Multi-Time Lagrangian and Hamiltonian Formalism.. | MR

[7] Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc., 10, 1978, 1-68, | DOI | MR | Zbl

[8] Francaviglia, M., Palese, M., Winterroth, E.: A new geometric proposal for the Hamiltonian description of classical field theories. Proc. of the 8th Int. Conf. ``DGA 2001 -- Differential Geometry and Its Applications", 2002, 415-423, Silesian University, | MR

[9] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Covariant Hamiltonian field theory. 1999, arXiv:hep-th/9904062v1.

[10] Gotay, M., Isenberg, J., Marsden, J. E., Montgomery, R.: Momentum maps and classical fields. Part I. Covariant field theory. 2004, arXiv:physics/9801019v2 [math-ph]. | MR

[11] Kanatchikov, I. V.: On quantization of field theories in polymomentum variables. AIP Conf. Proc., 453, 1, 1998, 356-367, | DOI | MR | Zbl

[12] Krupková, O.: Hamiltonian field theory. J. Geom. Phys., 43, 2002, 93-132, | DOI | MR | Zbl

[13] Krupková, O.: Hamiltonian field theory revisited: A geometric approach to regularity. Proc. Colloq. Diff. Geom. ``Steps in Differential Geometry", 2001, 187-207, Debrecen University, | MR | Zbl

[14] Krupková, O., Saunders, D. J.: Affine duality and Lagrangian and Hamiltonian systems. Int. J. Geom. Methods Mod. Phys., 8, 3, 2011, 669-697, | DOI | MR

[15] Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications. 1994, Kluwer Academic Publishers, Dordrecht, | MR | Zbl

[16] Miron, R., Hrimiuc, D., Shimada, H., Sabău, S. V.: The Geometry of Hamilton and Lagrange Spaces. Kluwer Academic Publishers, Dordrecht, 2001, | MR | Zbl

[17] Neagu, M.: Riemann-Lagrange Geometry on 1-Jet Spaces. 2005, Matrix Rom, Bucharest,

[18] Neagu, M.: The geometry of autonomous metrical multi-time Lagrange space of electrodynamics. Int. J. Math. Math. Sci., 29, 1, 2002, 7-16, | DOI | MR | Zbl

[19] Neagu, M., Udrişte, C., Oană, A.: Multi-time dependent sprays and $h$-traceless maps. Balkan J. Geom. Appl., 10, 2, 2005, 76-92, | MR

[20] Oană, A., Neagu, M.: The local description of the Ricci and Bianchi identities for an $h$-normal $N$-linear connection on the dual 1-jet space $J^{1\ast}(T,M)$. 2011, arXiv:1111.4173v1 [math.DG].. | MR

[21] Oană, A., Neagu, M.: From quadratic Hamiltonians of polymomenta to abstract geometrical Maxwell-like and Einstein-like equations. 2012, arXiv:1202.4477v1 [math-ph]. | MR

[22] Sachs, R. K., Wu, H.: General Relativity for Mathematicians. 1977, Springer-Verlag, New York, Heidelberg, Berlin, | MR | Zbl

[23] Saunders, D. J.: The Geometry of Jet Bundles. 1989, Cambridge University Press, New York, London, | Zbl

[24] Udrişte, C., Matei, L.: Lagrange-Hamilton Theories (in Romanian). 2008, Geometry Balkan Press, Bucharest,