Keywords: Poisson algebras; deformations; operads; cohomology
@article{COMIM_2012_20_2_a4,
author = {Remm, Elisabeth},
title = {Associative and {Lie} deformations of {Poisson} algebras},
journal = {Communications in Mathematics},
pages = {117--136},
year = {2012},
volume = {20},
number = {2},
mrnumber = {3032808},
zbl = {06165039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a4/}
}
Remm, Elisabeth. Associative and Lie deformations of Poisson algebras. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 117-136. http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a4/
[1] Doubek, M., Markl, M., Zima, P.: Deformation theory (lecture notes). Arch. Math. (Brno), 43, 5, 2007, 333-371, | MR | Zbl
[2] Dufour, J.-P.: Formes normales de structures de Poisson. Symplectic geometry and mathematical physics (Aix-en-Provence), 1990, 129-135, Progr. Math. 99, Birkhuser Boston, Boston, MA (1991). | MR
[3] Godbillon, C.: Géométrie différentielle et mécanique analytique. 1969, Hermann Editeurs. Collection Méthodes, | MR
[4] Goze, M., Remm, E.: 2-dimensional algebras. Afr. J. Math. Phys., 10, 1, 2011, 81-91, Corrected version: arXiv:1205.1221 [math.RA]. | MR
[5] Goze, M., Remm, E.: Contact structures on Lie algebras. 2012, Preprint Mulhouse,
[6] Goze, M., Remm, E.: Valued deformations of algebras. J. Algebra Appl, 3, 4, 2004, 345-365, | DOI | MR | Zbl
[7] Goze, M., Remm, E.: Poisson algebras in terms of nonassociative algebras. J. Algebra, 320, 1, 2008, 294-317, | DOI | MR
[8] Goze, N.: Poisson structures associated with rigid Lie algebras. Journal of Generalized Lie theory and Applications, 10, 2010,
[9] Goze, N., Remm, E.: Dimension theorem for free ternary partially associative algebras and applications. J. Algebra, 348, 2011, 14-36, | DOI | MR
[10] Kontsevich, M.: Deformation quantization of Poisson manifold I. arXiv:q-alg/9709040. | MR
[11] Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. (French). J. Differential Geometry, 12, 2, 1977, 253-300, | MR
[12] Loday, J.-L.: Algebraic operads. 2011, Preprint IRMA Strasbourg,
[13] Markl, M., Remm, E.: Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra, 299, 1, 2006, 171-189, | DOI | MR | Zbl
[14] Markl, M., Remm, E.: (Non-)Koszulness of operads for n-ary algebras, galgalim and other curiosities. arXiv:0907.1505.
[15] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. 2002, Mathematical Surveys and Monographs, 96. American Mathematical Society, Providence, RI, | MR | Zbl
[16] Pichereau, A.: Poisson (co)homology and isolated singularities. J. Algebra, 299, 2, 2006, 747-777, | DOI | MR | Zbl
[17] Remm, E.: On the NonKoszulity of ternary partially associative Operads. Proceedings of the Estonian Academy of Sciences, 59, 4, 2010, 355-363, | MR
[18] Remm, E., Goze, M.: On algebras obtained by tensor product. J. Algebra, 327, 2011, 13-30, | DOI | MR | Zbl
[19] Skosyrskii, V. G.: Noncommutative Jordan algebras a under the condition that $A^{(+)}$ is associative. Translated from Sibirskii Mathematicheskii Zhurnal, 32, 6, 1991, 150-157, | MR
[20] Vaisman, Izu: Lectures on the geometry of Poisson manifolds. 1994, Progress in Mathematics 118, Birkäuser Verlag, Basel, viii+205 pp. | MR | Zbl