Associative and Lie deformations of Poisson algebras
Communications in Mathematics, Tome 20 (2012) no. 2, pp. 117-136 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.
Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.
Classification : 17B63, 17Dxx, 53Dxx
Keywords: Poisson algebras; deformations; operads; cohomology
@article{COMIM_2012_20_2_a4,
     author = {Remm, Elisabeth},
     title = {Associative and {Lie} deformations of {Poisson} algebras},
     journal = {Communications in Mathematics},
     pages = {117--136},
     year = {2012},
     volume = {20},
     number = {2},
     mrnumber = {3032808},
     zbl = {06165039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a4/}
}
TY  - JOUR
AU  - Remm, Elisabeth
TI  - Associative and Lie deformations of Poisson algebras
JO  - Communications in Mathematics
PY  - 2012
SP  - 117
EP  - 136
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a4/
LA  - en
ID  - COMIM_2012_20_2_a4
ER  - 
%0 Journal Article
%A Remm, Elisabeth
%T Associative and Lie deformations of Poisson algebras
%J Communications in Mathematics
%D 2012
%P 117-136
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a4/
%G en
%F COMIM_2012_20_2_a4
Remm, Elisabeth. Associative and Lie deformations of Poisson algebras. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 117-136. http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a4/

[1] Doubek, M., Markl, M., Zima, P.: Deformation theory (lecture notes). Arch. Math. (Brno), 43, 5, 2007, 333-371, | MR | Zbl

[2] Dufour, J.-P.: Formes normales de structures de Poisson. Symplectic geometry and mathematical physics (Aix-en-Provence), 1990, 129-135, Progr. Math. 99, Birkhuser Boston, Boston, MA (1991). | MR

[3] Godbillon, C.: Géométrie différentielle et mécanique analytique. 1969, Hermann Editeurs. Collection Méthodes, | MR

[4] Goze, M., Remm, E.: 2-dimensional algebras. Afr. J. Math. Phys., 10, 1, 2011, 81-91, Corrected version: arXiv:1205.1221 [math.RA]. | MR

[5] Goze, M., Remm, E.: Contact structures on Lie algebras. 2012, Preprint Mulhouse,

[6] Goze, M., Remm, E.: Valued deformations of algebras. J. Algebra Appl, 3, 4, 2004, 345-365, | DOI | MR | Zbl

[7] Goze, M., Remm, E.: Poisson algebras in terms of nonassociative algebras. J. Algebra, 320, 1, 2008, 294-317, | DOI | MR

[8] Goze, N.: Poisson structures associated with rigid Lie algebras. Journal of Generalized Lie theory and Applications, 10, 2010,

[9] Goze, N., Remm, E.: Dimension theorem for free ternary partially associative algebras and applications. J. Algebra, 348, 2011, 14-36, | DOI | MR

[10] Kontsevich, M.: Deformation quantization of Poisson manifold I. arXiv:q-alg/9709040. | MR

[11] Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. (French). J. Differential Geometry, 12, 2, 1977, 253-300, | MR

[12] Loday, J.-L.: Algebraic operads. 2011, Preprint IRMA Strasbourg,

[13] Markl, M., Remm, E.: Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra, 299, 1, 2006, 171-189, | DOI | MR | Zbl

[14] Markl, M., Remm, E.: (Non-)Koszulness of operads for n-ary algebras, galgalim and other curiosities. arXiv:0907.1505.

[15] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. 2002, Mathematical Surveys and Monographs, 96. American Mathematical Society, Providence, RI, | MR | Zbl

[16] Pichereau, A.: Poisson (co)homology and isolated singularities. J. Algebra, 299, 2, 2006, 747-777, | DOI | MR | Zbl

[17] Remm, E.: On the NonKoszulity of ternary partially associative Operads. Proceedings of the Estonian Academy of Sciences, 59, 4, 2010, 355-363, | MR

[18] Remm, E., Goze, M.: On algebras obtained by tensor product. J. Algebra, 327, 2011, 13-30, | DOI | MR | Zbl

[19] Skosyrskii, V. G.: Noncommutative Jordan algebras a under the condition that $A^{(+)}$ is associative. Translated from Sibirskii Mathematicheskii Zhurnal, 32, 6, 1991, 150-157, | MR

[20] Vaisman, Izu: Lectures on the geometry of Poisson manifolds. 1994, Progress in Mathematics 118, Birkäuser Verlag, Basel, viii+205 pp. | MR | Zbl