Keywords: stationary action; functional extrema; conjugate points; oscillatory solutions; Lane-Emden equations
@article{COMIM_2012_20_2_a3,
author = {L\'opez, Emanuel and Molgado, Alberto and Vallejo, Jos\'e A.},
title = {The principle of stationary action in the calculus of variations},
journal = {Communications in Mathematics},
pages = {89--116},
year = {2012},
volume = {20},
number = {2},
mrnumber = {3032807},
zbl = {06165038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a3/}
}
TY - JOUR AU - López, Emanuel AU - Molgado, Alberto AU - Vallejo, José A. TI - The principle of stationary action in the calculus of variations JO - Communications in Mathematics PY - 2012 SP - 89 EP - 116 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a3/ LA - en ID - COMIM_2012_20_2_a3 ER -
López, Emanuel; Molgado, Alberto; Vallejo, José A. The principle of stationary action in the calculus of variations. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 89-116. http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a3/
[1] Adams, R. A.: Sobolev spaces. 1978, Academic Press, | Zbl
[2] Agarwal, R. P., O'Regan, D.: An introduction to ordinary differential equations. 2008, Springer Verlag, | MR | Zbl
[3] Baez, J. C.: Spin foam models. Class. Quant. Grav., 15, 1998, 1827-1858, | DOI | MR | Zbl
[4] Baker, L. M., Fairlie, D. B.: Hamilton-Jacobi equations and Brane associated Lagrangians. Nucl. Phys. B, 596, 2001, 348-364, | DOI | MR | Zbl
[5] Basdevant, J. L.: Variational principles in Physics. 2010, Springer, | MR
[6] Berezin, V.: Square-root quantization: application to quantum black holes. Nucl. Phys. Proc. Suppl., 57, 1997, 181-183, | DOI | MR | Zbl
[7] Binney, J., Tremain, S.: Galactic dynamics. 1994, Princeton University Press,
[8] Buck, B., (eds), V. A. Macaulay: Maximum Entropy in Action: A Collection of Expository Essays. 1991, Oxford University Press,
[9] Burghes, D. N., Graham, A.: Introduction to Control Theory, Including Optimal Control. 1980, Wiley, | MR | Zbl
[10] Carlini, A., Frolov, V. P., Mensky, M. B., Novikov, I. D., Soleng, H. H.: Time machines: the Principle of Self-Consistency as a consequence of the Principle of Minimal Action. Int. J. Mod. Phys. D, 4, 1995, 557-580, | DOI | MR
[11] Carlini, A., Greensite, J.: Square Root Actions, Metric Signature, and the Path-Integral of Quantum Gravity. Phys. Rev. D, 52, 1995, 6947-6964, | DOI | MR
[12] Carlip, S.: $(2+1)$-Dimensional Chern-Simons Gravity as a Dirac Square Root. Phys. Rev. D, 45, 1992, 3584-3590, Erratum-ibid D47 (1993) 1729. | DOI | MR
[13] Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. 1967, Dover publications, | MR
[14] Coffman, C. V., Wong, J. S. V.: Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations. Transactions of the AMS, 167, 1972, 399-434, | DOI | MR | Zbl
[15] Collins, G. W.: The fundamentals of stellar astrophysics. 1989, Freeman,
[16] Curtain, R. F., Pritchard, A. J.: Functional analysis in modern applied mathematics. 1977, Academic Press, | MR | Zbl
[17] Emden, R.: Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie und meteorologische Probleme. 1907, B. G. Teubner,
[18] Fiziev, P. P.: Relativistic Hamiltonian with square root in the path integral formalism. Theor. Math. Phys., 62, 2, 1985, 123-130, | DOI | MR
[19] Flett, T. M.: Differential analysis. 1980, Cambridge University Press, | MR | Zbl
[20] Fowler, R. H.: Some results on the form near infinity of real continuous solutions of a certain type of second order differential equations. Proc. London Math. Soc., 13, 1914, 341-371, | MR
[21] Fowler, R. H.: The form near infinity of real, continuous solutions of a certain differential equation of the second order. Quart. J. Math., 45, 1914, 289-350,
[22] Fowler, R. H.: The solution of Emden's and similar differential equations. Monthly Notices Roy. Astro. Soc., 91, 1930, 63-91,
[23] Fowler, R. H.: Further studies of Emden's and similar differential equations. Quart. J. Math., 2, 1931, 259-288, | DOI | Zbl
[24] Fox, C.: An introduction to the calculus of variations. 1963, Cambridge University Press, Reprinted by Dover (1987). | MR
[25] Friedman, J. L., Louko, J., Winters-Hilt, S. N.: Reduced phase space formalism for spherically symmetric geometry with a massive dust shell. Phys. Rev. D, 56, 1997, 7674-7691, | DOI | MR
[26] García, P. L.: The Poincaré-Cartan invariant in the calculus of variations. Symposia Mathematica, 14, 1974, 219-246, | MR | Zbl
[27] Garrett, B. C., Abusalbi, N., Kouri, D. J., Truhlar, D. G.: Test of variational transition state theory and the least action approximation for multidimensional tunneling probabilities against accurate quantal rate constants for a collinear reaction involving tunneling into an excited state. J. Chem. Phys., 83, 1985, 2252-2258, | DOI
[28] Gelfand, I. M., Fomin, S. V.: Calculus of variations. 2000, Dover, | Zbl
[29] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Advanced classical field theory. 2009, World Scientific, | MR | Zbl
[30] Giaquinta, M., Hildebrandt, S.: Calculus of variations I: The Lagrangian formalism. 1996, Springer Verlag, | MR
[31] Goenner, H., Havas, P.: Exact solutions of the generalized Lane--Emden equation. J. Math. Phys., 41, 10, 2000, 7029-7043, | DOI | MR | Zbl
[32] Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier (Grenoble), 23, 1973, 203-267, | DOI | MR | Zbl
[33] Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd. ed. 2001, Addison-Wesley, | MR
[34] González, G.: Relativistic motion with linear dissipation. Int. J. Theor. Phys., 46, 3, 2007, 417-423, | DOI | MR | Zbl
[35] Gray, C. G., Karl, G., Novikov, V. A.: Progress in classical and quantum variational principles. Rep. Prog. Phys., 67, 2004, 159-208, | DOI | MR
[36] Gray, C. G., Poisson, E.: When action is not least for orbits in general relativity. Am. J. Phys., 79, 1, 2011, 43-56, | DOI
[37] Gray, C. G., Taylor, E. F.: When action is not least. Am. J. Phys., 75, 5, 2007, 434-458, | DOI
[38] Hamber, H. W., Williams, R. M.: Discrete gravity in one dimension. Nuclear Physics B, 451, 1995, 305-324, | DOI | MR | Zbl
[39] Hand, L. N., Finch, J. D.: Analytical Mechanics. 1998, Cambridge University Press,
[40] Harremoës, P., Topsøe, F.: Maximum Entropy Fundamentals. Entropy, 3, 2001, 191-226, | DOI | MR
[41] Hermes, H., Lasalle, J. P.: Functional analysis and time optimal control. 1969, Academic Press, | MR | Zbl
[42] Horedt, G. P.: Polytropes: Applications in astrophysics and related fields. 2004, Kluwer,
[43] Jaynes, E. T.: Information theory and statistical mechanics. Phys. Rev., 106, 1957, 620-630, | DOI | MR | Zbl
[44] José, J. V., Saletan, E. J.: Classical Dynamics, a contemporary approach. 1998, Cambridge University Press, | MR | Zbl
[45] Kapustnikov, A. A., Pashnev, A., Pichugin, A.: The canonical quantization of the kink--model beyond the static solution. Phys. Rev. D, 55, 1997, 2257-2264, | DOI
[46] Klein, J. F.: Physical significance of entropy or of the second law. 2009, Cornell University Library,
[47] Krupková, O.: The geometry of ordinary variational equations, Lecture Notes in Mathematics 1678. Springer Verlag, 1997, | MR
[48] Krupková, O., (eds.), D. J. Saunders: Variations, geometry and physics. 2009, Nova Science Publishers, | MR | Zbl
[49] Lane, I. J. H.: On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestial experiment. Amer. J. Sci. and Arts, 4, 1870, 57-74,
[50] Lebedev, L. P., Cloud, M. J.: The calculus of variations and functional analysis (with optimal control and applications in mechanics). 2003, World Scientific, | MR | Zbl
[51] Lucha, W., Schöberl, F. F.: Relativistic Coulomb Problem: Energy Levels at the Critical Coupling Constant Analytically. Phys. Lett. B, 387, 1996, 573-576, | DOI
[52] Martyushev, L. M., Seleznev, V. D.: Maximum entropy production principle in physics, chemistry and biology. Physics Reports, 426, 2006, 1-45, | DOI | MR
[53] Menotti, P.: Hamiltonian structure of 2+1 dimensional gravity. Recent developments in general relativity, 14th SIGRAV Conference on General Relativity and Gravitational Physics, Genova, Italy (2000), 2002, 165-177, Springer, | MR | Zbl
[54] Moore, T. A.: Getting the Most Action from the Least Action: A proposal. Am. J. Phys., 72, 4, 2004, 522-527, | DOI
[55] Nersesyan, A. P.: Hamiltonian formalism for particles with a generalized rigidity. Theor. Math. Phys., 117, 1, 1998, 1214-1222, | DOI | MR | Zbl
[56] Pars, L. A.: An introduction to the calculus of variations. 1962, Heinemann, Reprinted by Dover (2010).. | MR | Zbl
[57] Puzio, R.: On the square root of the Laplace--Beltrami operator as a Hamiltonian. Class. Quantum Grav., 11, 1994, 609-620, | DOI | MR | Zbl
[58] Rajaraman, R.: Solitons and Instantons. 1988, North--Holland Publishing, | MR
[59] Ramond, P.: Field theory: A modern primer (Frontiers in Physics series Vol. 74). 2001, Westview Press,
[60] Razavy, M.: Classical And Quantum Dissipative Systems. 2006, Imperial College Press, | MR
[61] Rojas, E.: Higher order curvature terms in Born-Infeld type brane theories. Int. J. Mod. Phys. D, 20, 2011, 59-75, | DOI | MR | Zbl
[62] Saunders, D. J.: An alternative approach to the Cartan form in Lagrangian field theories. J. Phys. A, 20, 1987, 339-349, | DOI | MR | Zbl
[63] Sagan, H.: Introduction to the calculus of variations. 1992, Dover, | MR
[64] Simmons, G. F., Krantz, S. G.: Differential Equations: Theory, Technique, and Practice. 2006, McGraw-Hill,
[65] Smith, D.: Variational methods in optimization. 1998, Dover, | Zbl
[66] Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein's Field Equations. 2003, Cambridge University Press, | MR | Zbl
[67] Stirzaker, D.: Elementary probability. 2003, Cambridge University Press, | MR | Zbl
[68] Sussmann, H. J., Willems, J. C.: $300$ years of optimal control: from the brachystochrone problem to the maximum principle. IEEE Control Systems, 17, 1997, 32-44, | DOI
[69] Taylor, E. F.: Guest Editorial: A Call to Action. Am. J. Phys., 71, 5, 2003, 423-425, | DOI
[70] Taylor, J. R.: Classical mechanics. 2005, University Science Books, | Zbl
[71] Thornton, S. T., Marion, J. B.: Classical Dynamics of Particles and Systems. 2004, Brooks/Cole,
[72] Troutman, J. L.: Variational Calculus and Optimal Control: Optimization With Elementary Convexity. 1996, Springer Verlag, | MR | Zbl
[73] Brunt, B. Van: The calculus of variations. 2004, Springer Verlag, | MR
[74] Wang, Q. A.: Maximum entropy change and least action principle for non equilibrium systems. Astrophysics and Space Sciences, 305, 2006, 273-281, | DOI
[75] Whittaker, E. T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th. ed. 1937, Dover, | MR
[76] Williams, R. M.: Recent Progress in Regge Calculus. Nucl. Phys. Proc. Suppl., 57, 1997, 73-81, | DOI | MR | Zbl
[77] Wong, J. S. W.: On the generalized Emden-Fowler equation. SIAM Rev., 17, 2, 1975, 339-360, | DOI | MR | Zbl
[78] Zaslavski, A. J.: Turnpike properties in the calculus of variations and optimal control. 2006, Springer Verlag, | MR | Zbl
[79] Zeidler, E.: Nonlinear functional analysis and its applications, Vol. III: Variational methods and optimization. 1986, Springer Verlag,
[80] Zloshchastiev, K. G.: Quantum kink model and $SU(2)$ symmetry: Spin interpretation and T-violation. J. Phys. A: Math. Gen., 31, 1998, 6081-6085, | DOI | Zbl
[81] Zwiebach, B.: A First Course in String Theory. 2004, Cambridge University Press, | MR | Zbl