Keywords: Diophantine equation; exponential equation; primitive divisor theorem
@article{COMIM_2012_20_2_a2,
author = {Godinho, Hemar and Marques, Diego and Togb\'e, Alain},
title = {On the {Diophantine} equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$},
journal = {Communications in Mathematics},
pages = {81--88},
year = {2012},
volume = {20},
number = {2},
mrnumber = {3032806},
zbl = {06165037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a2/}
}
TY - JOUR AU - Godinho, Hemar AU - Marques, Diego AU - Togbé, Alain TI - On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$ JO - Communications in Mathematics PY - 2012 SP - 81 EP - 88 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a2/ LA - en ID - COMIM_2012_20_2_a2 ER -
Godinho, Hemar; Marques, Diego; Togbé, Alain. On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 81-88. http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a2/
[1] Muriefah, F. S. Abu: On the Diophantine equation $x^2+5^{2k}=y^n$. Demonstratio Math., 39, 2006, 285-289, | MR
[2] Muriefah, F. S. Abu, Arif, S. A.: The Diophantine equation $x^2+5^{2k+1}=y^n$. Indian J. Pure Appl. Math., 30, 1999, 229-231, | MR
[3] Muriefah, F. S. Abu, Luca, F., Togbé, A.: On the Diophantine equation $x^2+5^a\cdot 13^b=y^n$. Glasgow Math. J., 50, 2006, 175-181,
[4] Arif, S. A., Abu Muriefah, F. S.: On a Diophantine equation. Bull. Austral. Math. Soc., 57, 1998, 189-198, | DOI | MR | Zbl
[5] Arif, S. A., Abu Muriefah, F. S.: On the Diophantine equation $x^2+2^k=y^n$. Int. J. Math. Math. Sci., 20, 1997, 299-304, | DOI | MR
[6] Arif, S. A., Abu Muriefah, F. S.: On the Diophantine equation $x^2+3^m=y^n$. Int. J. Math. Math. Sci., 21, 1998, 619-620, | DOI | MR
[7] Arif, S. A., Abu Muriefah, F. S.: On the Diophantine equation $x^2+q^{2k+1}=y^n$. J. Number Theory, 95, 2002, 95-100, | DOI | MR | Zbl
[8] Bérczes, A., Brindza, B., Hajdu, L.: On power values of polynomials. Publ. Math. Debrecen, 53, 1998, 375-381, | MR
[9] Bérczes, A., Pink, I.: On the diophantine equation $x^2 + p^{2k} = y^n$. Archiv der Mathematik, 91, 2008, 505-517, | MR | Zbl
[10] Bérczes, A., Pink, I.: On the diophantine equation $x^2 + p^{2l+1} = y^n$. Glasgow Math. Journal, 54, 2012, 415-428, | MR
[11] Bilu, Yu., Hanrot, G., Voutier, P.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math., 539, 2001, 75-122, | MR | Zbl
[12] Bugeaud, Y., Muriefah, F. S. Abu: The Diophantine equation $x^2 + c = y^n$: a brief overview. Revista Colombiana de Matematicas, 40, 2006, 31-37, | MR
[13] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell Equation. Compositio Math., 142, 2006, 31-62, | DOI | MR | Zbl
[14] Cangül, I. N., Demirci, M., Inam, I., Luca, F., Soydan, G.: On the Diophantine equation $x^2 + 2^a\cdot 3^b\cdot 11^c = y^n$. Accepted to appear in Math. Slovaca.
[15] Cangü, I. N., Demirci, M., Luca, F., Pintér, A., Soydan, G.: On the Diophantine equation $x^2 + 2^a\cdot 11^b = y^n$. Fibonacci Quart., 48, 2010, 39-46, | MR
[16] Cangül, I. N., Demirci, M., Soydan, G., Tzanakis, N.: The Diophantine equation $x^2+5^a\cdot 11^b=y^n$. Funct. Approx. Comment. Math, 43, 2010, 209-225, | MR | Zbl
[17] Cannon, J., Playoust, C.: MAGMA: a new computer algebra system. Euromath Bull., 2, 1, 1996, 113-144, | MR
[18] Goins, E., Luca, F., Togbé, A.: On the Diophantine equation $x^2 + 2^{\alpha }5^{\beta }13^{\gamma } = y^n$. Algorithmic number theory, Lecture Notes in Computer Science, 5011/2008, 2008, 430-442, | MR | Zbl
[19] Ko, C.: On the Diophantine equation $x^2=y^n+1$, $xy\not =0$. Sci. Sinica, 14, 1965, 457-460, | MR
[20] Le, M.: An exponential Diophantine equation. Bull. Austral. Math. Soc., 64, 2001, 99-105, | DOI | MR | Zbl
[21] Le, M.: On Cohn's conjecture concerning the Diophantine $x^2+2^m=y^n$. Arch. Math. (Basel), 78, 2002, 26-35, | MR
[22] Le, M., Zhu, H.: On some generalized Lebesgue-Nagell equations. Journal of Number Theory, 131/3, 2011, 458-469, | DOI | MR | Zbl
[23] Lebesgue, V. A.: Sur l'impossibilité en nombres entiers de l'equation $x^m=y^2+1$. Nouv. Annal. des Math., 9, 1850, 178-181,
[24] Luca, F.: On a Diophantine equation. Bull. Austral. Math. Soc., 61, 2000, 241-246, | DOI | MR | Zbl
[25] Luca, F.: On the Diophantine equation $x^2+2^a\cdot 3^b=y^n$. Int. J. Math. Math. Sci., 29, 2002, 239-244,
[26] Luca, F., Togbé, A.: On the Diophantine equation $x^2+2^a\cdot 5^b=y^n$. Int. J. Number Theory, 4, 2008, 973-979, | MR | Zbl
[27] Luca, F., Togbé, A.: On the Diophantine equation $x^2 + 7^{2k} = y^n$. Fibonacci Quart., 54, 4, 2007, 322-326, | MR | Zbl
[28] Pink, I., Rábai, Zs.: On the Diophantine equation $x^2 + 5^{k}17^l = y^n$. Commun. Math., 19, 2011, 1-9, | MR
[29] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations. Indag. Math. (N.S.), 17/1, 2006, 103-114, | DOI | MR | Zbl
[30] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms. Publ. Math. Debrecen, 71/3-4, 2007, 349-374, | MR | Zbl
[31] Schinzel, A., Tijdeman, R.: On the equation $y^m = P(x)$. Acta Arith., 31, 1976, 199-204, | MR
[32] Shorey, T. N., Tijdeman, R.: Exponential Diophantine equations, Cambridge Tracts in Mathematics. 1986, 87. Cambridge University Press, Cambridge, x+240 pp.. | MR
[33] Tengely, Sz.: On the Diophantine equation $x^2+a^2=2y^p$. Indag. Math. (N.S.), 15, 2004, 291-304, | MR