On a problem of Bednarek
Communications in Mathematics, Tome 20 (2012) no. 2, pp. 79-80
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We answer a question of Bednarek proposed at the 9th Polish, Slovak and Czech conference in Number Theory.
We answer a question of Bednarek proposed at the 9th Polish, Slovak and Czech conference in Number Theory.
Classification : 11A63
Keywords: sum of digits
@article{COMIM_2012_20_2_a1,
     author = {Luca, Florian},
     title = {On a problem of {Bednarek}},
     journal = {Communications in Mathematics},
     pages = {79--80},
     year = {2012},
     volume = {20},
     number = {2},
     mrnumber = {3032805},
     zbl = {06165036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a1/}
}
TY  - JOUR
AU  - Luca, Florian
TI  - On a problem of Bednarek
JO  - Communications in Mathematics
PY  - 2012
SP  - 79
EP  - 80
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a1/
LA  - en
ID  - COMIM_2012_20_2_a1
ER  - 
%0 Journal Article
%A Luca, Florian
%T On a problem of Bednarek
%J Communications in Mathematics
%D 2012
%P 79-80
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a1/
%G en
%F COMIM_2012_20_2_a1
Luca, Florian. On a problem of Bednarek. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 79-80. http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a1/

[1] Luca, F.: Arithmetic properties of positive integers with a fixed digit sum. Revista Matematica Iberoamericana, 22, 2, 2006, 369-412, | DOI | MR

[2] Pan, H.: On the $m$-ary expansion of a multiple of $(m^k-1)/(m-1)$. Publ. Math. Debrecen, to appear.

[3] Sun, Z.-W.: On divisibility concerning binomial coefficients. J. Austral. Math. Soc., in press, arXiv:1005.1054.