A new variational characterization of compact conformally flat 4-manifolds
Communications in Mathematics, Tome 20 (2012) no. 2, pp. 71-77 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^{4},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional $$ F(g)=\int _{M^{4}}(aR^{2}+b|Ric|^{2})\,\mathrm {d}v_{g}\,,$$ where $$(a,b)\in \mathbb {R}^{2}\setminus L_{1}\cup L_{2}$$ $$L_{1}\colon 3a+b=0\,;\quad L_{2}\colon 6a-b+1=0\,,$$ then $(M^{4},g)$ is either scalar flat or a space form.
In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^{4},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional $$ F(g)=\int _{M^{4}}(aR^{2}+b|Ric|^{2})\,\mathrm {d}v_{g}\,,$$ where $$(a,b)\in \mathbb {R}^{2}\setminus L_{1}\cup L_{2}$$ $$L_{1}\colon 3a+b=0\,;\quad L_{2}\colon 6a-b+1=0\,,$$ then $(M^{4},g)$ is either scalar flat or a space form.
Classification : 53C20, 53C25
Keywords: conformally flat; 4-manifold; variational characterization
@article{COMIM_2012_20_2_a0,
     author = {Wu, Faen and Zhao, Xinnuan},
     title = {A new variational characterization of compact conformally flat 4-manifolds},
     journal = {Communications in Mathematics},
     pages = {71--77},
     year = {2012},
     volume = {20},
     number = {2},
     mrnumber = {3032804},
     zbl = {06165035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a0/}
}
TY  - JOUR
AU  - Wu, Faen
AU  - Zhao, Xinnuan
TI  - A new variational characterization of compact conformally flat 4-manifolds
JO  - Communications in Mathematics
PY  - 2012
SP  - 71
EP  - 77
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a0/
LA  - en
ID  - COMIM_2012_20_2_a0
ER  - 
%0 Journal Article
%A Wu, Faen
%A Zhao, Xinnuan
%T A new variational characterization of compact conformally flat 4-manifolds
%J Communications in Mathematics
%D 2012
%P 71-77
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a0/
%G en
%F COMIM_2012_20_2_a0
Wu, Faen; Zhao, Xinnuan. A new variational characterization of compact conformally flat 4-manifolds. Communications in Mathematics, Tome 20 (2012) no. 2, pp. 71-77. http://geodesic.mathdoc.fr/item/COMIM_2012_20_2_a0/

[1] Berger, M.: Riemannian geometry during the second half of the twentieth century. 2000, University Lecture Series, Vol. 17, Amer. Math. Soc., Providence RI, | MR | Zbl

[2] Besse, A. L.: Einstein Manifolds. 1987, Erg. Math. Grenzgebiete 10, Springer-Verlag, Heidberg-Berlin-New York, | MR | Zbl

[3] Chang, S.-Y. A., Gursky, M. J., Yang, P.: An equation of Monge-Ampere type in conformal georemtry and four manifolds of positive Ricci curvature. Ann. Math., 155, 3, 2002, 709-787, | DOI | MR

[4] Gursky, M. J.: Locally conformally flat 4 and 6 manifolds of positive scalar curvature and positive Euler characteristic. Indiana Univ. Math. J., 43, 1994, 747-774, | DOI | MR

[5] Gursky, M. J.: Manifolds with $\delta W^{+}=0$ and Einstein constant of the sphere. Math. Ann., 318, 3, 2000, 417-431, | DOI | MR | Zbl

[6] Gursky, M. J., Viaclovsky, J. A.: A new variational characterization of three-dimensional space forms. Invent. Math., 145, 2001, 251-278, | DOI | MR | Zbl

[7] Hu, Z. J., Li, H. Z.: A new variational characterization of n-dimensional space forms. Trans. Amer. Math. Soc., 356, 8, 2004, 3005-3023, | DOI | MR | Zbl

[8] Lanczos, C.: A remarkable property of the riemann-Christoffel tensor in four dimentions. Ann. Math., 39, 4, 1938, 842-850, | DOI | MR

[9] LeBrun, C., Maskit, B.: On optimal 4-manifolds metrics. J. Georem. Anal., 18, 2, 2008, 537-564, | DOI | MR

[10] Reilly, R. C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differ. Geom., MR49:6102, 8, 3, 1973, 465-477, | MR | Zbl

[11] Rosenberg, S.: The Variation of the de Rham zeta function. Trans. Amer. Math. Soc., 299, 2, 1987, 535-557, | DOI | MR | Zbl

[12] Schoen, R.: Variation theory for the total scalar curvature functional for Riemannian metrics and related topics. Lecture Notes in Math. 1365, Topics in Calculus of Variations, Montecatini. Terme Springer. Verlag, 1987, 120-154, | MR

[13] Wu, Faen: On the variation of a metric and it's application. Acta. Math. Sinica, 26, 10, 2010, 2003-2014, | DOI | MR