Projective metrizability in Finsler geometry
Communications in Mathematics, Tome 20 (2012) no. 1, pp. 63-68 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics.
The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics.
Classification : 53C60
Keywords: Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form
@article{COMIM_2012_20_1_a6,
     author = {Saunders, David},
     title = {Projective metrizability in {Finsler} geometry},
     journal = {Communications in Mathematics},
     pages = {63--68},
     year = {2012},
     volume = {20},
     number = {1},
     mrnumber = {3001632},
     zbl = {06202719},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a6/}
}
TY  - JOUR
AU  - Saunders, David
TI  - Projective metrizability in Finsler geometry
JO  - Communications in Mathematics
PY  - 2012
SP  - 63
EP  - 68
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a6/
LA  - en
ID  - COMIM_2012_20_1_a6
ER  - 
%0 Journal Article
%A Saunders, David
%T Projective metrizability in Finsler geometry
%J Communications in Mathematics
%D 2012
%P 63-68
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a6/
%G en
%F COMIM_2012_20_1_a6
Saunders, David. Projective metrizability in Finsler geometry. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a6/

[1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. 2000, Springer | MR | Zbl

[2] Crampin, M., Mestdag, T., Saunders, D.J.: The multiplier approach to the projective Finsler metrizability problem. Diff. Geom. Appl., 30, 6, 2012, 604-621 | DOI | MR | Zbl

[3] Crampin, M., Mestdag, T., Saunders, D.J.: Hilbert forms for a Finsler metrizable projective class of sprays. Diff. Geom. Appl., to appear

[4] Krupková, O., Prince, G.E.: Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations. Handbook of Global Analysis, 2008, 837-904, Elsevier | MR | Zbl

[5] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. 2001, Kluwer | MR | Zbl

[6] Whitehead, J.H.C.: Convex regions in the geometry of paths. Quart. J. Math., 3, 1932, 33-42 | DOI | Zbl

[7] Whitehead, J.H.C.: Convex regions in the geometry of paths -- addendum. Quart. J. Math., 4, 1933, 226-227 | DOI | Zbl