Keywords: Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form
@article{COMIM_2012_20_1_a6,
author = {Saunders, David},
title = {Projective metrizability in {Finsler} geometry},
journal = {Communications in Mathematics},
pages = {63--68},
year = {2012},
volume = {20},
number = {1},
mrnumber = {3001632},
zbl = {06202719},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a6/}
}
Saunders, David. Projective metrizability in Finsler geometry. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a6/
[1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. 2000, Springer | MR | Zbl
[2] Crampin, M., Mestdag, T., Saunders, D.J.: The multiplier approach to the projective Finsler metrizability problem. Diff. Geom. Appl., 30, 6, 2012, 604-621 | DOI | MR | Zbl
[3] Crampin, M., Mestdag, T., Saunders, D.J.: Hilbert forms for a Finsler metrizable projective class of sprays. Diff. Geom. Appl., to appear
[4] Krupková, O., Prince, G.E.: Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations. Handbook of Global Analysis, 2008, 837-904, Elsevier | MR | Zbl
[5] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. 2001, Kluwer | MR | Zbl
[6] Whitehead, J.H.C.: Convex regions in the geometry of paths. Quart. J. Math., 3, 1932, 33-42 | DOI | Zbl
[7] Whitehead, J.H.C.: Convex regions in the geometry of paths -- addendum. Quart. J. Math., 4, 1933, 226-227 | DOI | Zbl