Keywords: singular Lagrangians; Euler-Lagrange form; point symmetry; conservation law; equivalent Lagrangians
@article{COMIM_2012_20_1_a3,
author = {Havelkov\'a, Monika},
title = {Symmetries of a dynamical system represented by singular {Lagrangians}},
journal = {Communications in Mathematics},
pages = {23--32},
year = {2012},
volume = {20},
number = {1},
mrnumber = {3001629},
zbl = {06202716},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a3/}
}
Havelková, Monika. Symmetries of a dynamical system represented by singular Lagrangians. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a3/
[1] Cariñena, J.F., Férnandez-Núñez, J.: Geometric Theory of Time-Dependent Singular Lagrangians. Fortschr. Phys., 41, 1993, 517-552 | MR
[2] Cawley, R.: Determination of the Hamiltonian in the presence of constraints. Phys. Rev. Lett., 42, 1979, 413-416 | DOI
[3] Chinea, D., León, M. de, Marrero, J.C.: The constraint algorithm for time-dependent Lagrangians. J. Math. Phys., 35, 1994, 3410-3447 | DOI | MR | Zbl
[4] Dirac, P.A.M.: Generalized Hamiltonian dynamics. Canad. J. Math., II, 1950, 129-148 | DOI | MR | Zbl
[5] El-Zalan, H.A., Muslih, S.I., Elsabaa, F.M.F.: The Hamiltonian-Jacobi analysis of dynamical system with singular higher order Lagrangians. Hadronic Journal, 30, 2007, 209-220 | MR
[6] Gotay, M.J., Nester, J.M.: Presymplectic Lagrangian systems I: the constraint algorithm and the equivalence theorem. Ann. Inst. H. Poincaré, Sect. A, 30, 1979, 129-142 | MR | Zbl
[7] Gotay, M.J., Nester, J.M.: Presymplectic Lagrangian systems II: the second order equation problem. Ann. Inst. H. Poincaré, Sect. A, 32, 1980, 1-13 | MR | Zbl
[8] Gotay, M.J., Nester, J.M., Hinds, G.: Presymplectic manifolds and the Dirac--Bergmann theory of constraints. J. Math. Phys., 19, 1978, 2388-2399 | DOI | MR | Zbl
[9] Gràcia, X., Pons, J.M.: Guage transformations, Dirac's conjecture and degrees of freedom for constrained systems. Ann. Phys., 187, 1988, 355-368 | DOI | MR
[10] Gràcia, X., Pons, J.M.: A generalized geometric framework for constrained systems. Differential Geometry and its Applications, 2, 1992, 223-247 | DOI | MR | Zbl
[11] Havelková, M.: A geometric analysis of dynamical systems with singular Lagrangians. Communications in Mathematics, 19, 2011, 169-178 | MR | Zbl
[12] Krupka, D.: Some geometric aspects of variational problems in fibered manifolds. Folia Fac. Sci. Nat. UJEP Brunensis, 14, 1973, 1-65
[13] Krupková, O.: A geometric setting for higher-order Dirac-Bergmann theory of constraints. J. Math. Phys., 35, 1994, 6557-6576 | DOI | MR | Zbl
[14] Krupková, O.: The Geometry of Ordinary Variational Equations. 1997, Springer | MR
[15] LI, Z.-P.: Symmetry in a constrained Hamiltonian system with singular higher-order Lagrangian. J. Phys. A: Math. Gen., 24, 1991, 4261-4274 | DOI | MR | Zbl
[16] LI, Z.-P.: A counterexample to a conjecture of Dirac for a system with singular higher-order Lagrangian. Europhys. Lett., 21, 1993, 141-146 | DOI
[17] LI, Z.-P.: Symmetry in phase space for a system a singular higher-order Lagrangian. Physical Review E, 50, 1994, 876-887 | MR