Keywords: local variational problem; global current; Chern-Simons theory
@article{COMIM_2012_20_1_a2,
author = {Francaviglia, M. and Palese, M. and Winterroth, E.},
title = {Locally variational invariant field equations and global currents: {Chern-Simons} theories},
journal = {Communications in Mathematics},
pages = {13--22},
year = {2012},
volume = {20},
number = {1},
mrnumber = {3001628},
zbl = {06202715},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a2/}
}
TY - JOUR AU - Francaviglia, M. AU - Palese, M. AU - Winterroth, E. TI - Locally variational invariant field equations and global currents: Chern-Simons theories JO - Communications in Mathematics PY - 2012 SP - 13 EP - 22 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a2/ LA - en ID - COMIM_2012_20_1_a2 ER -
%0 Journal Article %A Francaviglia, M. %A Palese, M. %A Winterroth, E. %T Locally variational invariant field equations and global currents: Chern-Simons theories %J Communications in Mathematics %D 2012 %P 13-22 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a2/ %G en %F COMIM_2012_20_1_a2
Francaviglia, M.; Palese, M.; Winterroth, E. Locally variational invariant field equations and global currents: Chern-Simons theories. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a2/
[1] Allemandi, G., Francaviglia, M., Raiteri, M.: Covariant charges in Chern-Simons $AdS_3$ gravity. Classical Quant. Grav., 20, 3, 2003, 483-506 | DOI | MR | Zbl
[2] Anderson, I.M.: Natural variational principles on Riemannian manifolds. Ann. of Math. (2), 120, 2, 1984, 329-370 | DOI | MR | Zbl
[3] Bañados, M., Teitelboim, C., Zanelli, J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett., 69, 13, 1992, 1849-1851 | DOI | MR | Zbl
[4] Borowiec, A., Ferraris, M., Francaviglia, M.: A covariant Formalism for Chern-Simons Gravity. J. Phys. A., 36, 2003, 2589-2598 | DOI | MR | Zbl
[5] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.: Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math., 41, 2003, 319-331 | MR | Zbl
[6] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys., 46, 5, 2005, 052903, 15 pp. | DOI | MR | Zbl
[7] Chamseddine, A.H.: Topological gravity and supergravity in various dimensions. Nucl. Phys. B, 346, 1, 1990, 213-234 | DOI | MR
[8] Chern, S.S., Simons, J.: Some cohomology classes in principal fiber bundles and their application to riemannian geometry. Proc. Nat. Acad. Sci. U.S.A., 68, 4, 1971, 791-794 | DOI | MR | Zbl
[9] Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math., 99, 1974, 48-69 | DOI | MR | Zbl
[10] Deser, S., Jackiw, R., Templeton, S.: Topologically massive gauge theories. Ann. Physics, 140, 2, 1982, 372-411 | DOI | MR
[11] Eck, D.J.: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc., 247, 1981, 1-48 | MR | Zbl
[12] Fatibene, L., Ferraris, M., Francaviglia, M.: Augmented variational principles and relative conservation laws in classical field theory. Int. J. Geom. Methods Mod. Phys., 2, 3, 2005, 373-392 | DOI | MR | Zbl
[13] Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E.: Canonical connections in gauge-natural field theories. Int. J. Geom. Methods Mod. Phys., 5, 6, 2008, 973-988 | DOI | MR | Zbl
[14] Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E.: Gauge-natural Noether currents and connection fields. Int. J. Geom. Methods Mod. Phys., 8, 1, 2011, 177-185 | DOI | MR | Zbl
[15] Ferraris, M., Francaviglia, M., Raiteri, M.: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Classical Quant. Grav., 20, 2003, 4043-4066 | DOI | MR
[16] Ferraris, M., Palese, M., Winterroth, E.: Local variational problems and conservation laws. Diff. Geom. Appl, 29, 2011, S80-S85 | MR | Zbl
[17] Francaviglia, M., Palese, M., Winterroth, E.: Second variational derivative of gauge-natural invariant Lagrangians and conservation laws. 2005, Differential geometry and its applications, Matfyzpress, Prague, 591-604 | MR | Zbl
[18] Francaviglia, M., Palese, M., Winterroth, E.: Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Methods Mod. Phys., 10, 1, 2013, 1220024 (10 pages). | MR | Zbl
[19] Francaviglia, M., Palese, M., Vitolo, R.: Symmetries in finite order variational sequences. Czech. Math. J., 52, 1, 2002, 197-213 | DOI | MR | Zbl
[20] Krupka, D.: Variational Sequences on Finite Order Jet Spaces. Proc. Diff. Geom. Appl., 1990, 236-254, J. Janyška, D. Krupka eds., World Sci., Singapore | MR | Zbl
[21] Krupka, D., Sedenkova, J.: Variational sequences and Lepage forms. Differential geometry and its applications, Matfyzpress, Prague, 2005, 617-627 | MR | Zbl
[22] Krupkova, O.: Lepage forms in the calculus of variations. Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 27-55 | MR | Zbl
[23] Lepage, Th.H.J.: Sur les champ geodesiques du Calcul de Variations, I, II. Bull. Acad. Roy. Belg., Cl. Sci., 22, 1936, 716-729, 1036--1046
[24] Musilová, J., Lenc, M.: Lepage forms in variational theories from Lepage's idea to the variational sequence. Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 3-26 | MR | Zbl
[25] Noether, E.: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257
[26] Palese, M., Winterroth, E.: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno), 41, 3, 2005, 289-310 | MR | Zbl
[27] Palese, M., Winterroth, E.: Covariant gauge-natural conservation laws. Rep. Math. Phys., 54, 3, 2004, 349-364 | DOI | MR | Zbl
[28] Palese, M., Winterroth, E.: On the relation between the Jacobi morphism and the Hessian in gauge-natural field theories. Teoret. Mat. Fiz., 152, 2, 2007, 377-389, transl. Theoret. and Math. Phys. 152 (2007) 1191--1200 | MR
[29] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes. AIP Conf. Proc., 1360, 2011, 106-112 | Zbl
[30] Palese, M., Winterroth, E., Garrone, E.: Second variational derivative of local variational problems and conservation laws. Arch. Math. (Brno), 47, 5, 2011, 395-403 | MR | Zbl
[31] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012
[32] Witten, E.: $2+1$-dimensional gravity as an exactly soluble system. Nucl. Phys., B 311, 1, 1988, 46-78, E. Witten: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121 (1989) 351-399 | DOI | MR