Locally variational invariant field equations and global currents: Chern-Simons theories
Communications in Mathematics, Tome 20 (2012) no. 1, pp. 13-22 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.
We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.
Classification : 55N30, 55R10, 58A12, 58A20, 58E30, 70S10
Keywords: local variational problem; global current; Chern-Simons theory
@article{COMIM_2012_20_1_a2,
     author = {Francaviglia, M. and Palese, M. and Winterroth, E.},
     title = {Locally variational invariant field equations and global currents: {Chern-Simons} theories},
     journal = {Communications in Mathematics},
     pages = {13--22},
     year = {2012},
     volume = {20},
     number = {1},
     mrnumber = {3001628},
     zbl = {06202715},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a2/}
}
TY  - JOUR
AU  - Francaviglia, M.
AU  - Palese, M.
AU  - Winterroth, E.
TI  - Locally variational invariant field equations and global currents: Chern-Simons theories
JO  - Communications in Mathematics
PY  - 2012
SP  - 13
EP  - 22
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a2/
LA  - en
ID  - COMIM_2012_20_1_a2
ER  - 
%0 Journal Article
%A Francaviglia, M.
%A Palese, M.
%A Winterroth, E.
%T Locally variational invariant field equations and global currents: Chern-Simons theories
%J Communications in Mathematics
%D 2012
%P 13-22
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a2/
%G en
%F COMIM_2012_20_1_a2
Francaviglia, M.; Palese, M.; Winterroth, E. Locally variational invariant field equations and global currents: Chern-Simons theories. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a2/

[1] Allemandi, G., Francaviglia, M., Raiteri, M.: Covariant charges in Chern-Simons $AdS_3$ gravity. Classical Quant. Grav., 20, 3, 2003, 483-506 | DOI | MR | Zbl

[2] Anderson, I.M.: Natural variational principles on Riemannian manifolds. Ann. of Math. (2), 120, 2, 1984, 329-370 | DOI | MR | Zbl

[3] Bañados, M., Teitelboim, C., Zanelli, J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett., 69, 13, 1992, 1849-1851 | DOI | MR | Zbl

[4] Borowiec, A., Ferraris, M., Francaviglia, M.: A covariant Formalism for Chern-Simons Gravity. J. Phys. A., 36, 2003, 2589-2598 | DOI | MR | Zbl

[5] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.: Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math., 41, 2003, 319-331 | MR | Zbl

[6] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys., 46, 5, 2005, 052903, 15 pp. | DOI | MR | Zbl

[7] Chamseddine, A.H.: Topological gravity and supergravity in various dimensions. Nucl. Phys. B, 346, 1, 1990, 213-234 | DOI | MR

[8] Chern, S.S., Simons, J.: Some cohomology classes in principal fiber bundles and their application to riemannian geometry. Proc. Nat. Acad. Sci. U.S.A., 68, 4, 1971, 791-794 | DOI | MR | Zbl

[9] Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math., 99, 1974, 48-69 | DOI | MR | Zbl

[10] Deser, S., Jackiw, R., Templeton, S.: Topologically massive gauge theories. Ann. Physics, 140, 2, 1982, 372-411 | DOI | MR

[11] Eck, D.J.: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc., 247, 1981, 1-48 | MR | Zbl

[12] Fatibene, L., Ferraris, M., Francaviglia, M.: Augmented variational principles and relative conservation laws in classical field theory. Int. J. Geom. Methods Mod. Phys., 2, 3, 2005, 373-392 | DOI | MR | Zbl

[13] Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E.: Canonical connections in gauge-natural field theories. Int. J. Geom. Methods Mod. Phys., 5, 6, 2008, 973-988 | DOI | MR | Zbl

[14] Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E.: Gauge-natural Noether currents and connection fields. Int. J. Geom. Methods Mod. Phys., 8, 1, 2011, 177-185 | DOI | MR | Zbl

[15] Ferraris, M., Francaviglia, M., Raiteri, M.: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Classical Quant. Grav., 20, 2003, 4043-4066 | DOI | MR

[16] Ferraris, M., Palese, M., Winterroth, E.: Local variational problems and conservation laws. Diff. Geom. Appl, 29, 2011, S80-S85 | MR | Zbl

[17] Francaviglia, M., Palese, M., Winterroth, E.: Second variational derivative of gauge-natural invariant Lagrangians and conservation laws. 2005, Differential geometry and its applications, Matfyzpress, Prague, 591-604 | MR | Zbl

[18] Francaviglia, M., Palese, M., Winterroth, E.: Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Methods Mod. Phys., 10, 1, 2013, 1220024 (10 pages). | MR | Zbl

[19] Francaviglia, M., Palese, M., Vitolo, R.: Symmetries in finite order variational sequences. Czech. Math. J., 52, 1, 2002, 197-213 | DOI | MR | Zbl

[20] Krupka, D.: Variational Sequences on Finite Order Jet Spaces. Proc. Diff. Geom. Appl., 1990, 236-254, J. Janyška, D. Krupka eds., World Sci., Singapore | MR | Zbl

[21] Krupka, D., Sedenkova, J.: Variational sequences and Lepage forms. Differential geometry and its applications, Matfyzpress, Prague, 2005, 617-627 | MR | Zbl

[22] Krupkova, O.: Lepage forms in the calculus of variations. Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 27-55 | MR | Zbl

[23] Lepage, Th.H.J.: Sur les champ geodesiques du Calcul de Variations, I, II. Bull. Acad. Roy. Belg., Cl. Sci., 22, 1936, 716-729, 1036--1046

[24] Musilová, J., Lenc, M.: Lepage forms in variational theories from Lepage's idea to the variational sequence. Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 3-26 | MR | Zbl

[25] Noether, E.: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257

[26] Palese, M., Winterroth, E.: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno), 41, 3, 2005, 289-310 | MR | Zbl

[27] Palese, M., Winterroth, E.: Covariant gauge-natural conservation laws. Rep. Math. Phys., 54, 3, 2004, 349-364 | DOI | MR | Zbl

[28] Palese, M., Winterroth, E.: On the relation between the Jacobi morphism and the Hessian in gauge-natural field theories. Teoret. Mat. Fiz., 152, 2, 2007, 377-389, transl. Theoret. and Math. Phys. 152 (2007) 1191--1200 | MR

[29] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes. AIP Conf. Proc., 1360, 2011, 106-112 | Zbl

[30] Palese, M., Winterroth, E., Garrone, E.: Second variational derivative of local variational problems and conservation laws. Arch. Math. (Brno), 47, 5, 2011, 395-403 | MR | Zbl

[31] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012

[32] Witten, E.: $2+1$-dimensional gravity as an exactly soluble system. Nucl. Phys., B 311, 1, 1988, 46-78, E. Witten: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121 (1989) 351-399 | DOI | MR