Do Barbero-Immirzi connections exist in different dimensions and signatures?
Communications in Mathematics, Tome 20 (2012) no. 1, pp. 3-11 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We shall show that no reductive splitting of the spin group exists in dimension $3\le m\le 20$ other than in dimension $m=4$. In dimension $4$ there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature $(2,2)$ is investigated explicitly in detail. Reductive splittings allow to define a global $\mbox{SU} (2)$-connection over spacetime which encodes in an weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is then obtained by restriction to a spacelike slice. This mechanism provides a good control on globality and covariance of BI connection showing that in dimension other than $4$ one needs to provide some other mechanism to define the analogous of BI connection and control its globality.
We shall show that no reductive splitting of the spin group exists in dimension $3\le m\le 20$ other than in dimension $m=4$. In dimension $4$ there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature $(2,2)$ is investigated explicitly in detail. Reductive splittings allow to define a global $\mbox{SU} (2)$-connection over spacetime which encodes in an weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is then obtained by restriction to a spacelike slice. This mechanism provides a good control on globality and covariance of BI connection showing that in dimension other than $4$ one needs to provide some other mechanism to define the analogous of BI connection and control its globality.
Classification : 53C07
Keywords: Barbero-Immirzi connection; global connections; Loop Quantum Gravity
@article{COMIM_2012_20_1_a1,
     author = {Fatibene, L. and Francaviglia, M. and Garruto, S.},
     title = {Do {Barbero-Immirzi} connections exist in different dimensions and signatures?},
     journal = {Communications in Mathematics},
     pages = {3--11},
     year = {2012},
     volume = {20},
     number = {1},
     mrnumber = {3001627},
     zbl = {06202714},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a1/}
}
TY  - JOUR
AU  - Fatibene, L.
AU  - Francaviglia, M.
AU  - Garruto, S.
TI  - Do Barbero-Immirzi connections exist in different dimensions and signatures?
JO  - Communications in Mathematics
PY  - 2012
SP  - 3
EP  - 11
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a1/
LA  - en
ID  - COMIM_2012_20_1_a1
ER  - 
%0 Journal Article
%A Fatibene, L.
%A Francaviglia, M.
%A Garruto, S.
%T Do Barbero-Immirzi connections exist in different dimensions and signatures?
%J Communications in Mathematics
%D 2012
%P 3-11
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a1/
%G en
%F COMIM_2012_20_1_a1
Fatibene, L.; Francaviglia, M.; Garruto, S. Do Barbero-Immirzi connections exist in different dimensions and signatures?. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a1/

[1] Barbero, F.: Real Ashtekar variables for Lorentzian signature space-time. Phys. Rev. D, 51, 10, 1995, 5507-5510 | DOI | MR

[2] Immirzi, G.: Quantum Gravity and Regge Calculus. Nucl. Phys. Proc. Suppl., 57, 1-3, 1997, 65-72 | DOI | MR | Zbl

[3] Rovelli, C.: Quantum Gravity. 2004, Cambridge University Press, Cambridge | MR | Zbl

[4] Samuel, J.: Is Barbero's Hamiltonian Formulation a Gauge Theory of Lorentzian Gravity?. Classical Quant. Grav., 17, 2000, 141-148 | DOI | MR | Zbl

[5] Thiemann, T.: Loop Quantum Gravity: An Inside View. Lecture Notes in Physics, 721, , 2007, 185-263, arXiv:hep-th/0608210 | MR | Zbl

[6] Fatibene, L., Francaviglia, M., Rovelli, C.: On a Covariant Formulation of the Barberi-Immirzi Connection. Classical Quant. Grav., 24, 2007, 3055-3066, gr-qc/0702134 | DOI | MR

[7] Fatibene, L., Francaviglia, M., Ferraris, M.: Inducing Barbero-Immirzi connections along SU(2) reductions of bundles on spacetime. Phys. Rev. D, 84, 6, 2011, 064035-064041 | DOI

[8] Berger, M.: Sur les groupes d'holonomie des vari?t?s ? connexion affine et des vari?t?s Riemanniennes. Bull. Soc. Math. France, 83, 1955, 279-330 | MR

[9] Merkulov, S., Schwachh?fer, L.: Classi?cation of irreducible holonomies of torsion-free affine connections. Annals of Mathematics, 150, 1, 1999, 77-149, arXiv:math/9907206 | DOI | MR

[10] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. 1963, John Wiley & Sons, Inc., New York, USA | Zbl

[11] Antonsen, F., Flagga, M.S.N.: Spacetime Topology (I) - Chirality and the Third Stiefel-Whitney Class. Int. J. Theor. Phys., 41, 2, 2002, 171-198 | DOI | MR | Zbl

[12] Holst, S.: Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D, 53, 10, 1996, 5966-5969 | DOI | MR

[13] Fatibene, L., Francaviglia, M., Rovelli, C.: Spacetime Lagrangian Formulation of Barbero-Immirzi Gravity. Classical Quant. Grav., 24, 2007, 4207-4217, gr-qc/0706.1899 | DOI | MR | Zbl

[14] Fatibene, L., Ferraris, M., Francaviglia, M.: New Cases of Universality Theorem for Gravitational Theories. Classical Quant. Grav., 27, 16, 2010, 165021. arXiv:1003.1617 | DOI | MR

[15] Alexandrov, S.: On choice of connection in loop quantum gravity. Phys. Rev. D, 65, 2001, 024011-024018 | DOI | MR

[16] Alexandrov, S., Livine, E.R.: $SU(2)$ loop quantum gravity seen from covariant theory. Phys. Rev. D, 67, 4, 2003, 044009-044024 | DOI | MR

[17] Bodendorfer, N., Thiemann, T., Thurn, A.: New Variables for Classical and Quantum Gravity in all Dimensions III. Quantum Theory. arXiv:1105.3705v1 [gr-qc]

[18] Nieto, J.A.: Canonical Gravity in Two Time and Two Space Dimensions. arXiv:1107.0718v3 [gr-qc]

[19] Ferraris, M., Francaviglia, M., Gatto, L.: Reducibility of $G$-invariant Linear Connections in Principal $G$-bundles. Colloq. Math. Soc. J. B., 56 Differential Geometry, 1989, 231-252 | MR

[20] Godina, M., Matteucci, P.: Reductive $G$-structures and Lie derivatives. Journal of Geometry and Physics, 47, 2003, 66-86 | DOI | MR | Zbl

[21] Fatibene, L., Francaviglia, M.: Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories. 2003, Kluwer Academic Publishers, Dordrecht | MR | Zbl

[22] Chu, K., Farel, C., Fee, G., McLenaghan, R.: Fields Inst. Commun. 15. (1997) 195 | MR