Keywords: Barbero-Immirzi connection; global connections; Loop Quantum Gravity
@article{COMIM_2012_20_1_a1,
author = {Fatibene, L. and Francaviglia, M. and Garruto, S.},
title = {Do {Barbero-Immirzi} connections exist in different dimensions and signatures?},
journal = {Communications in Mathematics},
pages = {3--11},
year = {2012},
volume = {20},
number = {1},
mrnumber = {3001627},
zbl = {06202714},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a1/}
}
TY - JOUR AU - Fatibene, L. AU - Francaviglia, M. AU - Garruto, S. TI - Do Barbero-Immirzi connections exist in different dimensions and signatures? JO - Communications in Mathematics PY - 2012 SP - 3 EP - 11 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a1/ LA - en ID - COMIM_2012_20_1_a1 ER -
Fatibene, L.; Francaviglia, M.; Garruto, S. Do Barbero-Immirzi connections exist in different dimensions and signatures?. Communications in Mathematics, Tome 20 (2012) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/COMIM_2012_20_1_a1/
[1] Barbero, F.: Real Ashtekar variables for Lorentzian signature space-time. Phys. Rev. D, 51, 10, 1995, 5507-5510 | DOI | MR
[2] Immirzi, G.: Quantum Gravity and Regge Calculus. Nucl. Phys. Proc. Suppl., 57, 1-3, 1997, 65-72 | DOI | MR | Zbl
[3] Rovelli, C.: Quantum Gravity. 2004, Cambridge University Press, Cambridge | MR | Zbl
[4] Samuel, J.: Is Barbero's Hamiltonian Formulation a Gauge Theory of Lorentzian Gravity?. Classical Quant. Grav., 17, 2000, 141-148 | DOI | MR | Zbl
[5] Thiemann, T.: Loop Quantum Gravity: An Inside View. Lecture Notes in Physics, 721, , 2007, 185-263, arXiv:hep-th/0608210 | MR | Zbl
[6] Fatibene, L., Francaviglia, M., Rovelli, C.: On a Covariant Formulation of the Barberi-Immirzi Connection. Classical Quant. Grav., 24, 2007, 3055-3066, gr-qc/0702134 | DOI | MR
[7] Fatibene, L., Francaviglia, M., Ferraris, M.: Inducing Barbero-Immirzi connections along SU(2) reductions of bundles on spacetime. Phys. Rev. D, 84, 6, 2011, 064035-064041 | DOI
[8] Berger, M.: Sur les groupes d'holonomie des vari?t?s ? connexion affine et des vari?t?s Riemanniennes. Bull. Soc. Math. France, 83, 1955, 279-330 | MR
[9] Merkulov, S., Schwachh?fer, L.: Classi?cation of irreducible holonomies of torsion-free affine connections. Annals of Mathematics, 150, 1, 1999, 77-149, arXiv:math/9907206 | DOI | MR
[10] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. 1963, John Wiley & Sons, Inc., New York, USA | Zbl
[11] Antonsen, F., Flagga, M.S.N.: Spacetime Topology (I) - Chirality and the Third Stiefel-Whitney Class. Int. J. Theor. Phys., 41, 2, 2002, 171-198 | DOI | MR | Zbl
[12] Holst, S.: Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D, 53, 10, 1996, 5966-5969 | DOI | MR
[13] Fatibene, L., Francaviglia, M., Rovelli, C.: Spacetime Lagrangian Formulation of Barbero-Immirzi Gravity. Classical Quant. Grav., 24, 2007, 4207-4217, gr-qc/0706.1899 | DOI | MR | Zbl
[14] Fatibene, L., Ferraris, M., Francaviglia, M.: New Cases of Universality Theorem for Gravitational Theories. Classical Quant. Grav., 27, 16, 2010, 165021. arXiv:1003.1617 | DOI | MR
[15] Alexandrov, S.: On choice of connection in loop quantum gravity. Phys. Rev. D, 65, 2001, 024011-024018 | DOI | MR
[16] Alexandrov, S., Livine, E.R.: $SU(2)$ loop quantum gravity seen from covariant theory. Phys. Rev. D, 67, 4, 2003, 044009-044024 | DOI | MR
[17] Bodendorfer, N., Thiemann, T., Thurn, A.: New Variables for Classical and Quantum Gravity in all Dimensions III. Quantum Theory. arXiv:1105.3705v1 [gr-qc]
[18] Nieto, J.A.: Canonical Gravity in Two Time and Two Space Dimensions. arXiv:1107.0718v3 [gr-qc]
[19] Ferraris, M., Francaviglia, M., Gatto, L.: Reducibility of $G$-invariant Linear Connections in Principal $G$-bundles. Colloq. Math. Soc. J. B., 56 Differential Geometry, 1989, 231-252 | MR
[20] Godina, M., Matteucci, P.: Reductive $G$-structures and Lie derivatives. Journal of Geometry and Physics, 47, 2003, 66-86 | DOI | MR | Zbl
[21] Fatibene, L., Francaviglia, M.: Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories. 2003, Kluwer Academic Publishers, Dordrecht | MR | Zbl
[22] Chu, K., Farel, C., Fee, G., McLenaghan, R.: Fields Inst. Commun. 15. (1997) 195 | MR