Variational formulations I: Statics of mechanical systems
Communications in Mathematics, Tome 19 (2011) no. 2, pp. 179-206 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Two improvements of variational formulations of mechanics are proposed. The first consists in a modification of the definition of equilibrium. The second consists in adding elements of control by external devices. In the present note the proposed improvements are applied to variational principles of statics. Numerous examples are given.
Two improvements of variational formulations of mechanics are proposed. The first consists in a modification of the definition of equilibrium. The second consists in adding elements of control by external devices. In the present note the proposed improvements are applied to variational principles of statics. Numerous examples are given.
Classification : 70C20
Keywords: variational principles; constraints; Legendre-Fenchel transformation
@article{COMIM_2011_19_2_a6,
     author = {Tulczyjew, W{\l}odzimierz M.},
     title = {Variational formulations {I:} {Statics} of mechanical systems},
     journal = {Communications in Mathematics},
     pages = {179--206},
     year = {2011},
     volume = {19},
     number = {2},
     mrnumber = {2897269},
     zbl = {1244.70006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a6/}
}
TY  - JOUR
AU  - Tulczyjew, Włodzimierz M.
TI  - Variational formulations I: Statics of mechanical systems
JO  - Communications in Mathematics
PY  - 2011
SP  - 179
EP  - 206
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a6/
LA  - en
ID  - COMIM_2011_19_2_a6
ER  - 
%0 Journal Article
%A Tulczyjew, Włodzimierz M.
%T Variational formulations I: Statics of mechanical systems
%J Communications in Mathematics
%D 2011
%P 179-206
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a6/
%G en
%F COMIM_2011_19_2_a6
Tulczyjew, Włodzimierz M. Variational formulations I: Statics of mechanical systems. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 179-206. http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a6/