A geometric analysis of dynamical systems with singular Lagrangians
Communications in Mathematics, Tome 19 (2011) no. 2, pp. 169-178
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study dynamics of singular Lagrangian systems described by implicit differential equations from a geometric point of view using the exterior differential systems approach. We analyze a concrete Lagrangian previously studied by other authors by methods of Dirac’s constraint theory, and find its complete dynamics.
We study dynamics of singular Lagrangian systems described by implicit differential equations from a geometric point of view using the exterior differential systems approach. We analyze a concrete Lagrangian previously studied by other authors by methods of Dirac’s constraint theory, and find its complete dynamics.
Classification : 37J05, 51P05, 70G45, 70H03, 70H45
Keywords: singular Lagrangian systems; geometric constraint algorithm; extended dynamics; proper dynamics; final constraint submanifold higher order field theories
@article{COMIM_2011_19_2_a5,
     author = {Havelkov\'a, Monika},
     title = {A geometric analysis of dynamical systems with singular {Lagrangians}},
     journal = {Communications in Mathematics},
     pages = {169--178},
     year = {2011},
     volume = {19},
     number = {2},
     mrnumber = {2897268},
     zbl = {1251.37052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a5/}
}
TY  - JOUR
AU  - Havelková, Monika
TI  - A geometric analysis of dynamical systems with singular Lagrangians
JO  - Communications in Mathematics
PY  - 2011
SP  - 169
EP  - 178
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a5/
LA  - en
ID  - COMIM_2011_19_2_a5
ER  - 
%0 Journal Article
%A Havelková, Monika
%T A geometric analysis of dynamical systems with singular Lagrangians
%J Communications in Mathematics
%D 2011
%P 169-178
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a5/
%G en
%F COMIM_2011_19_2_a5
Havelková, Monika. A geometric analysis of dynamical systems with singular Lagrangians. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 169-178. http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a5/

[1] Chinea, D., León, M. de, Marrero, J.C.: The constraint algorithm for time-dependent Lagrangians. J. Math. Phys. 35 1994 3410-3447 | DOI | MR | Zbl

[2] Dirac, P.A.M.: Generalized Hamiltonian dynamics. Canad. J. Math. II 1950 129-148 | DOI | MR | Zbl

[3] El-Zalan, H.A., Muslih, S.I., Elsabaa, F.M.F.: The Hamiltonian-Jacobi analysis of dynamical system with singular higher order Lagrangians. Hadronic Journal 30 2007 209-220 | MR

[4] Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier, Grenoble 23 1973 203-267 | DOI | MR | Zbl

[5] Gotay, M.J., Nester, J.M.: Presymplectic Lagrangian systems I: the constraint algorithm and the equivalence theorem. Ann. Inst. H. Poincaré Sect. A, 30 1979 129-142 | MR | Zbl

[6] Gotay, M.J., Nester, J.M.: Presymplectic Lagrangian systems II: the second order equation problem. Ann. Inst. H. Poincaré Sect. A, 32 1980 1-13 | MR | Zbl

[7] Gotay, M.J., Nester, J.M., Hinds, G.: Presymplectic manifolds and the Dirac-Bergmann theory of constraints. J. Math. Phys. 19 1978 2388-2399 | DOI | MR | Zbl

[8] Krupková, O.: A geometric setting for higher-order Dirac-Bergmann theory of constraints. J. Math. Phys. 35 1994 6557-6576 | DOI | MR | Zbl

[9] Krupková, O.: The Geometry of Ordinary Variational Equations. Springer 1997 | MR

[10] Saunders, D.J.: The Geometry of Jet Bundles. Cambridge Univ. Press, Cambridge 2nd Ed. 2004 | MR