Conformal vector fields on Finsler manifolds
Communications in Mathematics, Tome 19 (2011) no. 2, pp. 149-168 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties.
Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties.
Classification : 53A30, 53C60
Keywords: spray manifold; Finsler manifold; projective vector field; affine vector field; conformal vector field
@article{COMIM_2011_19_2_a4,
     author = {Szilasi, J\'ozsef and T\'oth, Anna},
     title = {Conformal vector fields on {Finsler} manifolds},
     journal = {Communications in Mathematics},
     pages = {149--168},
     year = {2011},
     volume = {19},
     number = {2},
     mrnumber = {2897267},
     zbl = {1247.53089},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a4/}
}
TY  - JOUR
AU  - Szilasi, József
AU  - Tóth, Anna
TI  - Conformal vector fields on Finsler manifolds
JO  - Communications in Mathematics
PY  - 2011
SP  - 149
EP  - 168
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a4/
LA  - en
ID  - COMIM_2011_19_2_a4
ER  - 
%0 Journal Article
%A Szilasi, József
%A Tóth, Anna
%T Conformal vector fields on Finsler manifolds
%J Communications in Mathematics
%D 2011
%P 149-168
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a4/
%G en
%F COMIM_2011_19_2_a4
Szilasi, József; Tóth, Anna. Conformal vector fields on Finsler manifolds. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 149-168. http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a4/

[1] Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. 2nd edition, Springer-Verlag, New York and Berlin 1988 | MR | Zbl

[2] Akbar-Zadeh, H.: Transformations infinitésimales conformes des variétés finsleriennes compactes. Annales Polonici Mathematici XXXVI 1979 213-229 | MR | Zbl

[3] Akbar-Zadeh, H.: Champs de vecteurs projectifs sur le fibré unitaire. J. Math. pures et appl. 65 1986 47-79 | MR

[4] Bácsó, S., Szilasi, Z.: On the projective theory of sprays. Acta Math. Acad. Paed. Nyregyháziensis 26 2010 171-207 | MR | Zbl

[5] Crampin, M.: On horizontal distributions on the tangent bundle of a differentiable manifold. J. London Math. Soc (2) 3 1971 178-182 | DOI | MR | Zbl

[6] León, M. de, Rodrigues, P.R.: Methods of Differential Geometry in Analytical Mechanics. North-Holland, Amsterdam 1989 | MR | Zbl

[7] Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology. Vol. I, Academic Press, New York and London 1972 | Zbl

[8] Grifone, J.: Structure presque-tangente et connexions, I. Ann. Inst. Fourier (Grenoble) 22 1972 287-334 | DOI | MR | Zbl

[9] Grifone, J.: Transformations infinitésimales conformes d’une variété finslerienne. C.R. Acad. Sc. Paris 280, Série A 1975 519-522 | MR | Zbl

[10] Grifone, J.: Sur les transformations infinitésimales conformes d’une variété finslérienne. C.R. Acad. Sc. Paris 280, Série A 1975 583-585 | MR | Zbl

[11] Lang, S.: Fundamentals of Differential Geometry. Springer-Verlag, New York 1999 | MR | Zbl

[12] Lovas, R.L.: Affine and projective vector fields on spray manifolds. Periodica Mathematica Hungarica 48 2004 165-179 | DOI | MR | Zbl

[13] Matsumoto, M.: Theory of extended point transformations of Finsler spaces I. Tensor N.S. 45 1987 109-115 | Zbl

[14] Matsumoto, M.: Theory of extended point transformations of Finsler spaces II. Tensor N.S. 47 1988 203-214 | MR | Zbl

[15] Misra, R.B.: Groups of transformations in Finslerian spaces. Internal Reports of the ICTP, Trieste 1993

[16] Szilasi, J.: A Setting for Spray and Finsler Geometry. Handbook of Finsler Geometry , Kluwer Academic Publishers, Dordrecht 2003 1183-1426 | MR | Zbl

[17] Szilasi, J., Vincze, Cs.: On conformal equivalence of Riemann-Finsler metrics. Publ. Math. Debrecen 52 1998 167-185 | MR | Zbl

[18] Yano, K.: The Theory of Lie Derivatives and its Applications. North-Holland, Amsterdam 1957 | MR | Zbl

[19] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker Inc., New York 1973 | MR | Zbl