Tangent Lie algebras to the holonomy group of a Finsler manifold
Communications in Mathematics, Tome 19 (2011) no. 2, pp. 137-147 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our goal in this paper is to make an attempt to find the largest Lie algebra of vector fields on the indicatrix such that all its elements are tangent to the holonomy group of a Finsler manifold. First, we introduce the notion of the curvature algebra, generated by curvature vector fields, then we define the infinitesimal holonomy algebra by the smallest Lie algebra of vector fields on an indicatrix, containing the curvature vector fields and their horizontal covariant derivatives with respect to the Berwald connection. At the end we introduce conjugates of infinitesimal holonomy algebras by parallel translations with respect to the Berwald connection. We prove that this holonomy algebra is tangent to the holonomy group.
Our goal in this paper is to make an attempt to find the largest Lie algebra of vector fields on the indicatrix such that all its elements are tangent to the holonomy group of a Finsler manifold. First, we introduce the notion of the curvature algebra, generated by curvature vector fields, then we define the infinitesimal holonomy algebra by the smallest Lie algebra of vector fields on an indicatrix, containing the curvature vector fields and their horizontal covariant derivatives with respect to the Berwald connection. At the end we introduce conjugates of infinitesimal holonomy algebras by parallel translations with respect to the Berwald connection. We prove that this holonomy algebra is tangent to the holonomy group.
Classification : 22E65, 53B40, 53C29
Keywords: higher order field theories; boundary terms
@article{COMIM_2011_19_2_a3,
     author = {Muzsnay, Zolt\'an and Nagy, P\'eter T.},
     title = {Tangent {Lie} algebras to the holonomy group of a {Finsler} manifold},
     journal = {Communications in Mathematics},
     pages = {137--147},
     year = {2011},
     volume = {19},
     number = {2},
     mrnumber = {2897266},
     zbl = {1247.53026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a3/}
}
TY  - JOUR
AU  - Muzsnay, Zoltán
AU  - Nagy, Péter T.
TI  - Tangent Lie algebras to the holonomy group of a Finsler manifold
JO  - Communications in Mathematics
PY  - 2011
SP  - 137
EP  - 147
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a3/
LA  - en
ID  - COMIM_2011_19_2_a3
ER  - 
%0 Journal Article
%A Muzsnay, Zoltán
%A Nagy, Péter T.
%T Tangent Lie algebras to the holonomy group of a Finsler manifold
%J Communications in Mathematics
%D 2011
%P 137-147
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a3/
%G en
%F COMIM_2011_19_2_a3
Muzsnay, Zoltán; Nagy, Péter T. Tangent Lie algebras to the holonomy group of a Finsler manifold. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 137-147. http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a3/

[1] Barthel, W.: Nichtlineare Zusammenhänge und deren Holonomiegruppen. J. Reine Angew. Math. 212 1963 120-149 | MR | Zbl

[2] Crampin, M., Saunders, D.J.: Holonomy of a class of bundles with fibre metrics. arXiv: 1005.5478v1

[3] Kozma, L.: Holonomy structures in Finsler geometry, Part 5. Handbook of Finsler Geometry , P.L. Antonelli (ed.)445-490 Kluwer Academic Publishers, Dordrecht 2003 | MR

[4] Kriegl, A., Michor, P.W.: The Convenient Setting for Global Analysis. AMS, Providence, Surveys and Monographs 53 1997 | MR

[5] Michor, P.W.: Gauge Theory for Fiber Bundles. Monographs and Textbooks in Physical Sciences, Lecture Notes 19, Bibliopolis, Napoli 1991 | MR | Zbl

[6] Muzsnay, Z., Nagy, P.T.: Finsler manifolds with non-Riemannian holonomy. Houston J. Math

[7] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht 2001 | MR | Zbl

[8] Szabó, Z.I.: Positive definite Berwald spaces. Tensor , New Ser., 35 1981 25-39 | MR | Zbl