@article{COMIM_2011_19_2_a3,
author = {Muzsnay, Zolt\'an and Nagy, P\'eter T.},
title = {Tangent {Lie} algebras to the holonomy group of a {Finsler} manifold},
journal = {Communications in Mathematics},
pages = {137--147},
year = {2011},
volume = {19},
number = {2},
mrnumber = {2897266},
zbl = {1247.53026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a3/}
}
Muzsnay, Zoltán; Nagy, Péter T. Tangent Lie algebras to the holonomy group of a Finsler manifold. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 137-147. http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a3/
[1] Barthel, W.: Nichtlineare Zusammenhänge und deren Holonomiegruppen. J. Reine Angew. Math. 212 1963 120-149 | MR | Zbl
[2] Crampin, M., Saunders, D.J.: Holonomy of a class of bundles with fibre metrics. arXiv: 1005.5478v1
[3] Kozma, L.: Holonomy structures in Finsler geometry, Part 5. Handbook of Finsler Geometry , P.L. Antonelli (ed.)445-490 Kluwer Academic Publishers, Dordrecht 2003 | MR
[4] Kriegl, A., Michor, P.W.: The Convenient Setting for Global Analysis. AMS, Providence, Surveys and Monographs 53 1997 | MR
[5] Michor, P.W.: Gauge Theory for Fiber Bundles. Monographs and Textbooks in Physical Sciences, Lecture Notes 19, Bibliopolis, Napoli 1991 | MR | Zbl
[6] Muzsnay, Z., Nagy, P.T.: Finsler manifolds with non-Riemannian holonomy. Houston J. Math
[7] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht 2001 | MR | Zbl
[8] Szabó, Z.I.: Positive definite Berwald spaces. Tensor , New Ser., 35 1981 25-39 | MR | Zbl