Homogeneous variational problems: a minicourse
Communications in Mathematics, Tome 19 (2011) no. 2, pp. 91-128
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension $m$. In this minicourse we discuss these problems from a geometric point of view.
A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension $m$. In this minicourse we discuss these problems from a geometric point of view.
@article{COMIM_2011_19_2_a1,
author = {Saunders, David J.},
title = {Homogeneous variational problems: a minicourse},
journal = {Communications in Mathematics},
pages = {91--128},
year = {2011},
volume = {19},
number = {2},
mrnumber = {2897264},
zbl = {1257.58012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a1/}
}
Saunders, David J. Homogeneous variational problems: a minicourse. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 91-128. http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a1/
[1] Crampin, M., Saunders, D.J.: Some concepts of regularity for parametric multiple-integral problems in the calculus of variations. Czech Math. J. 59 (3) 2009 741-758 | DOI | MR | Zbl
[2] Giaquinta, M., Hildebrandt, S.: Calculus of Variations II. Springer 1996 | MR
[3] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer 1993 | MR
[4] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations. Krieger 1973
[5] Saunders, D.J.: Homogeneous variational complexes and bicomplexes. J. Geom. Phys. 59 2009 727-739 | MR | Zbl
[6] Saunders, D.J.: Some geometric aspects of the calculus of variations in several independent variables. Comm. Math. 18 (1) 2010 3-19 | MR | Zbl