Homogeneous variational problems: a minicourse
Communications in Mathematics, Tome 19 (2011) no. 2, pp. 91-128 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension $m$. In this minicourse we discuss these problems from a geometric point of view.
A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension $m$. In this minicourse we discuss these problems from a geometric point of view.
Classification : 35A15, 58A10, 58A20
Keywords: calculus of variations; parametric problems
@article{COMIM_2011_19_2_a1,
     author = {Saunders, David J.},
     title = {Homogeneous variational problems: a minicourse},
     journal = {Communications in Mathematics},
     pages = {91--128},
     year = {2011},
     volume = {19},
     number = {2},
     mrnumber = {2897264},
     zbl = {1257.58012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a1/}
}
TY  - JOUR
AU  - Saunders, David J.
TI  - Homogeneous variational problems: a minicourse
JO  - Communications in Mathematics
PY  - 2011
SP  - 91
EP  - 128
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a1/
LA  - en
ID  - COMIM_2011_19_2_a1
ER  - 
%0 Journal Article
%A Saunders, David J.
%T Homogeneous variational problems: a minicourse
%J Communications in Mathematics
%D 2011
%P 91-128
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a1/
%G en
%F COMIM_2011_19_2_a1
Saunders, David J. Homogeneous variational problems: a minicourse. Communications in Mathematics, Tome 19 (2011) no. 2, pp. 91-128. http://geodesic.mathdoc.fr/item/COMIM_2011_19_2_a1/

[1] Crampin, M., Saunders, D.J.: Some concepts of regularity for parametric multiple-integral problems in the calculus of variations. Czech Math. J. 59 (3) 2009 741-758 | DOI | MR | Zbl

[2] Giaquinta, M., Hildebrandt, S.: Calculus of Variations II. Springer 1996 | MR

[3] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer 1993 | MR

[4] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations. Krieger 1973

[5] Saunders, D.J.: Homogeneous variational complexes and bicomplexes. J. Geom. Phys. 59 2009 727-739 | MR | Zbl

[6] Saunders, D.J.: Some geometric aspects of the calculus of variations in several independent variables. Comm. Math. 18 (1) 2010 3-19 | MR | Zbl