Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds
Communications in Mathematics, Tome 19 (2011) no. 1, pp. 73-84 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(M,g)$ be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ in $M$, where $\alpha$, $c$ are two real constants and $\alpha>0$, $f$ is a smooth real valued function on $M$ and $\Delta_f=\Delta-\nabla f\nabla$. When $N$ is finite and the $N$-Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that $\infty$-Bakry-Emery Ricci tensor is bounded from below and $|\nabla f|$ is bounded from above, we also obtain a gradient estimate for positive solutions of the above equation. It extends the results of Yang [Yang, Y.Y. Gradient estimates for the equation $\Delta u+cu^{-\alpha}=0$ on Riemannian manifolds Acta. Math. Sin. 26(B) 2010 1177–1182].
Let $(M,g)$ be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ in $M$, where $\alpha$, $c$ are two real constants and $\alpha>0$, $f$ is a smooth real valued function on $M$ and $\Delta_f=\Delta-\nabla f\nabla$. When $N$ is finite and the $N$-Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that $\infty$-Bakry-Emery Ricci tensor is bounded from below and $|\nabla f|$ is bounded from above, we also obtain a gradient estimate for positive solutions of the above equation. It extends the results of Yang [Yang, Y.Y. Gradient estimates for the equation $\Delta u+cu^{-\alpha}=0$ on Riemannian manifolds Acta. Math. Sin. 26(B) 2010 1177–1182].
Classification : 35J60, 58J05
Keywords: gradient estimates; positive solution; Bakry-Emery Ricci tensor
@article{COMIM_2011_19_1_a4,
     author = {Zhang, Jing and Ma, Bingqing},
     title = {Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds},
     journal = {Communications in Mathematics},
     pages = {73--84},
     year = {2011},
     volume = {19},
     number = {1},
     mrnumber = {2855392},
     zbl = {1242.58011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a4/}
}
TY  - JOUR
AU  - Zhang, Jing
AU  - Ma, Bingqing
TI  - Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds
JO  - Communications in Mathematics
PY  - 2011
SP  - 73
EP  - 84
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a4/
LA  - en
ID  - COMIM_2011_19_1_a4
ER  - 
%0 Journal Article
%A Zhang, Jing
%A Ma, Bingqing
%T Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds
%J Communications in Mathematics
%D 2011
%P 73-84
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a4/
%G en
%F COMIM_2011_19_1_a4
Zhang, Jing; Ma, Bingqing. Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds. Communications in Mathematics, Tome 19 (2011) no. 1, pp. 73-84. http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a4/

[1] Calabi, E.: An extension of E.Hopf’s maximum principle with application to Riemannian geometry. Duke Math. J. 25 1957 45–46 | DOI | MR

[2] Chen, L., Chen, W.Y.: Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds. Ann. Glob. Anal. Geom. 35 2009 397–404 | DOI | MR | Zbl

[3] Chen, L., Chen, W.Y.: Gradient estimates for positive smooth $f$-harmonic functions. Acta Math. Sci. 30(B) 2010 1614–1618 | MR | Zbl

[4] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure. Appl. Math. 28 1975 333–354 | DOI | MR | Zbl

[5] Guo, Z.M., Wei, J.C.: Hausdorff dimension of ruptures for solutions of a semilinear equation with singular nonlinearity. Manuscripta Math. 120 2006 193–209 | DOI | MR

[6] Hsu, S.Y.: Gradient estimates for a nonlinear parabolic equation under Ricci. arXiv: 0806.4004

[7] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Arch. Math. (Basel) 94 2010 265–275 | DOI | MR | Zbl

[8] Li, J.Y.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds. J. Funct. Anal. 100 1991 233–256 | DOI | MR | Zbl

[9] Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84 2005 1295–1361 | MR | Zbl

[10] Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds. J. Funct. Anal. 241 2006 374–382 | DOI | MR | Zbl

[11] Ma, L., Liu, B.Y.: Convexity of the first eigenfunction of the drifting Laplacian operator and its applications. New York J. Math. 14 2008 393–401 | MR | Zbl

[12] Ma, L., Liu, B.Y.: Convex eigenfunction of a drifting Laplacian operator and the fundamental gap. Pacific J. Math. 240 2009 343–361 | DOI | MR | Zbl

[13] Qian, Z.M.: A comparison theorem for an elliptic operator. Potential Analysis 8 1998 137–142 | DOI | MR | Zbl

[14] Wei, G.F., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor. J. Differential Geometry 83 2009 377–405 | MR | Zbl

[15] Yang, Y.Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc. Amer. Math. Soc. 136 2008 4095–4102 | DOI | MR | Zbl

[16] Yang, Y.Y.: Gradient estimates for the equation $\Delta u+cu^{-\alpha }=0$ on Riemannian manifolds. Acta. Math. Sin. 26(B) 2010 1177–1182 | DOI | MR | Zbl