Keywords: gradient estimates; positive solution; Bakry-Emery Ricci tensor
@article{COMIM_2011_19_1_a4,
author = {Zhang, Jing and Ma, Bingqing},
title = {Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds},
journal = {Communications in Mathematics},
pages = {73--84},
year = {2011},
volume = {19},
number = {1},
mrnumber = {2855392},
zbl = {1242.58011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a4/}
}
TY - JOUR
AU - Zhang, Jing
AU - Ma, Bingqing
TI - Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds
JO - Communications in Mathematics
PY - 2011
SP - 73
EP - 84
VL - 19
IS - 1
UR - http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a4/
LA - en
ID - COMIM_2011_19_1_a4
ER -
%0 Journal Article
%A Zhang, Jing
%A Ma, Bingqing
%T Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds
%J Communications in Mathematics
%D 2011
%P 73-84
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a4/
%G en
%F COMIM_2011_19_1_a4
Zhang, Jing; Ma, Bingqing. Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds. Communications in Mathematics, Tome 19 (2011) no. 1, pp. 73-84. http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a4/
[1] Calabi, E.: An extension of E.Hopf’s maximum principle with application to Riemannian geometry. Duke Math. J. 25 1957 45–46 | DOI | MR
[2] Chen, L., Chen, W.Y.: Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds. Ann. Glob. Anal. Geom. 35 2009 397–404 | DOI | MR | Zbl
[3] Chen, L., Chen, W.Y.: Gradient estimates for positive smooth $f$-harmonic functions. Acta Math. Sci. 30(B) 2010 1614–1618 | MR | Zbl
[4] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure. Appl. Math. 28 1975 333–354 | DOI | MR | Zbl
[5] Guo, Z.M., Wei, J.C.: Hausdorff dimension of ruptures for solutions of a semilinear equation with singular nonlinearity. Manuscripta Math. 120 2006 193–209 | DOI | MR
[6] Hsu, S.Y.: Gradient estimates for a nonlinear parabolic equation under Ricci. arXiv: 0806.4004
[7] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Arch. Math. (Basel) 94 2010 265–275 | DOI | MR | Zbl
[8] Li, J.Y.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds. J. Funct. Anal. 100 1991 233–256 | DOI | MR | Zbl
[9] Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84 2005 1295–1361 | MR | Zbl
[10] Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds. J. Funct. Anal. 241 2006 374–382 | DOI | MR | Zbl
[11] Ma, L., Liu, B.Y.: Convexity of the first eigenfunction of the drifting Laplacian operator and its applications. New York J. Math. 14 2008 393–401 | MR | Zbl
[12] Ma, L., Liu, B.Y.: Convex eigenfunction of a drifting Laplacian operator and the fundamental gap. Pacific J. Math. 240 2009 343–361 | DOI | MR | Zbl
[13] Qian, Z.M.: A comparison theorem for an elliptic operator. Potential Analysis 8 1998 137–142 | DOI | MR | Zbl
[14] Wei, G.F., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor. J. Differential Geometry 83 2009 377–405 | MR | Zbl
[15] Yang, Y.Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc. Amer. Math. Soc. 136 2008 4095–4102 | DOI | MR | Zbl
[16] Yang, Y.Y.: Gradient estimates for the equation $\Delta u+cu^{-\alpha }=0$ on Riemannian manifolds. Acta. Math. Sin. 26(B) 2010 1177–1182 | DOI | MR | Zbl