On D’Alembert’s Principle
Communications in Mathematics, Tome 19 (2011) no. 1, pp. 57-72 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory.
A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory.
Classification : 37J60, 70F25, 70H33, 70H45
Keywords: nonholonomic constraints; d’Alembert’s principle
@article{COMIM_2011_19_1_a3,
     author = {Bates, Larry M. and Nester, James M.},
     title = {On {D{\textquoteright}Alembert{\textquoteright}s} {Principle}},
     journal = {Communications in Mathematics},
     pages = {57--72},
     year = {2011},
     volume = {19},
     number = {1},
     mrnumber = {2855391},
     zbl = {06010915},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a3/}
}
TY  - JOUR
AU  - Bates, Larry M.
AU  - Nester, James M.
TI  - On D’Alembert’s Principle
JO  - Communications in Mathematics
PY  - 2011
SP  - 57
EP  - 72
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a3/
LA  - en
ID  - COMIM_2011_19_1_a3
ER  - 
%0 Journal Article
%A Bates, Larry M.
%A Nester, James M.
%T On D’Alembert’s Principle
%J Communications in Mathematics
%D 2011
%P 57-72
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a3/
%G en
%F COMIM_2011_19_1_a3
Bates, Larry M.; Nester, James M. On D’Alembert’s Principle. Communications in Mathematics, Tome 19 (2011) no. 1, pp. 57-72. http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a3/

[1] Bates, L.: Examples of singular nonholonomic reduction. Reports on Mathematical Physics 42 1998 231–247 | DOI | MR | Zbl

[2] Bates, L., Śniatycki, J.: Nonholonomic reduction. Reports on Mathematical Physics 32 1993 99–115 | DOI | MR

[3] Cantrijn, F., de León, M., Marrero, J., de Diego, D.: Reduction of constrained systems with symmetries. Journal of mathematical physics 40 1999 795–820 | DOI | MR

[4] Cushman, R., Kempainen, D., Śniatycki, J.: A classical particle with spin realized by reduction of a nonlinear nonholonomic constraint. Reports on mathematical physics 41 (1) 1998 133–142 | MR

[5] de León, M., de Diego, D.: Mechanical systems with nonlinear constraints. International journal of theoretical physics 36 (4) 1997 979–995 | DOI | MR

[6] Giaquinta, M., Hildebrandt, S.: Calculus of Variations I. Number 310 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag 1996 | MR

[7] Goldstein, H., Poole, C., Safko, J.: Classical mechanics. Addison-Wesley, third edition 2002 | MR

[8] Grácia, X., Martin, R.: Regularity and symmetries of nonholonomic systems. J. Phys. A: Math. Gen. 38 2005 1071–1087 | DOI | MR | Zbl

[9] Koon, W., Marsden, J.: Poisson reduction for nonholonomic mechanical systems with symmetry. Reports on mathematical physics 42 1998 101–134 | MR | Zbl

[10] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with non-holonomic constraints. J. Phys. A: Math. Gen. 34 2001 3859–3875 | DOI | MR

[11] Marle, C.-M.: Various approaches to conservative and nonconservative nonholonomic systems. Reports on mathematical physics 42 1998 211–229 | MR | Zbl

[12] Rosenberg, R.: Analytical dynamics of discrete systems. Plenum press 1997 | MR

[13] Śniatycki, J.: Orbits of families of vector fields on subcartesian spaces. Annales de L’Institut Fourier 53 2003 2257–2296 | DOI | MR | Zbl

[14] van der Schaft, A., Maschke, B.: On the hamiltonian formulation of nonholonomic mechanical systems. Reports on mathematical physics 34 (2) 1994 225–233 | DOI | MR | Zbl