On the diophantine equation $x^2+5^k17^l=y^n$
Communications in Mathematics, Tome 19 (2011) no. 1, pp. 1-9 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider the equation in the title in unknown integers $(x,y,k,l,n)$ with $x \ge 1$, $y >1$, $n \ge 3$, $k \ge 0$, $l \ge 0$ and $\gcd (x,y)=1$. Under the above conditions we give all solutions of the title equation (see Theorem 1).
Consider the equation in the title in unknown integers $(x,y,k,l,n)$ with $x \ge 1$, $y >1$, $n \ge 3$, $k \ge 0$, $l \ge 0$ and $\gcd (x,y)=1$. Under the above conditions we give all solutions of the title equation (see Theorem 1).
Classification : 11D41, 11D61
Keywords: exponential diophantine equations; primitive divisors
@article{COMIM_2011_19_1_a0,
     author = {Pink, Istv\'an and R\'abai, Zsolt},
     title = {On the diophantine equation $x^2+5^k17^l=y^n$},
     journal = {Communications in Mathematics},
     pages = {1--9},
     year = {2011},
     volume = {19},
     number = {1},
     mrnumber = {2855388},
     zbl = {1264.11026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a0/}
}
TY  - JOUR
AU  - Pink, István
AU  - Rábai, Zsolt
TI  - On the diophantine equation $x^2+5^k17^l=y^n$
JO  - Communications in Mathematics
PY  - 2011
SP  - 1
EP  - 9
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a0/
LA  - en
ID  - COMIM_2011_19_1_a0
ER  - 
%0 Journal Article
%A Pink, István
%A Rábai, Zsolt
%T On the diophantine equation $x^2+5^k17^l=y^n$
%J Communications in Mathematics
%D 2011
%P 1-9
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a0/
%G en
%F COMIM_2011_19_1_a0
Pink, István; Rábai, Zsolt. On the diophantine equation $x^2+5^k17^l=y^n$. Communications in Mathematics, Tome 19 (2011) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/COMIM_2011_19_1_a0/

[1] Muriefah, F.S.A.: On the Diophantine equation $x^2+5^{2k}=y^n$. Demonstratio Mathematica 319/2 2006 285–289 | Zbl

[2] Arif, S.A., Muriefah, F.S.A.: On the Diophantine equation $x^2+2^k=y^n$. Internat. J. Math. Math. Sci. 20 1997 299–304 | DOI | MR

[3] Arif, S.A., Muriefah, F.S.A.: The Diophantine equation $x^2+3^m=y^n$. Internat. J. Math. Math. Sci. 21 1998 619–620 | DOI | MR

[4] Arif, S.A., Muriefah, F.S.A.: The Diophantine equation $x^2+q^{2k}=y^n$. Arab. J. Sci. Sect. A Sci. 26 2001 53–62 | MR

[5] Arif, S.A., Muriefah, F.S.A.: On the Diophantine equation $x^2+2^k=y^n$ II. Arab J. Math. Sci. 7 2001 67–71 | MR | Zbl

[6] Arif, S.A., Muriefah, F.S.A.: On the Diophantine equation $x^2+q^{2k+1}=y^n$. J. Number Theory 95 2002 95–100 | DOI | MR | Zbl

[7] Bennett, M.A., Ellenberg, J.S., Ng, Nathan C.: The Diophantine equation $A^4+2^dB^2=C^n$. submitted

[8] Bennett, M.A., Skinner, C.M.: Ternary diophantine equations via Galois representations and modular forms. Canad. J. Math. 56/1 2004 23–54 | DOI | MR | Zbl

[9] Bérczes, A., Brindza, B., Hajdu, L.: On power values of polynomials. Publ. Math. Debrecen 53 1998 375–381 | MR

[10] Bérczes, A., Pink, I.: On the diophantine equation $x^2+p^{2k}=y^n$. Archiv der Mathematik 91 2008 505–517 | MR | Zbl

[11] Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte. J. Reine Angew. Math. 539 2001 75–122 | MR | Zbl

[12] Bugeaud, Y.: On the diophantine equation $x^2-p^m=\pm y^n$. Acta Arith. 80 1997 213–223 | MR

[13] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential and diophantine equations II. The Lebesque-Nagell equation. Compos. Math. 142/1 2006 31–62 | DOI | MR

[14] Bugeaud, Y., Muriefah, F.S. Abu: The Diophantine equation $x^2+c=y^n$: a brief overview. Revista Colombiana de Matematicas 40 2006 31–37 | MR

[15] Bugeaud, Y., Shorey, T.N.: On the number of solutions of the generalized Ramanujan-Nagell equation. J. reine angew. Math. 539 2001 55–74 | MR | Zbl

[16] Cangül, I.N., Demirci, M., Soydan, G., Tzanakis, N.: On the Diophantine equation $x^2 + 5^a11^b = y^n$. Funct. Approx. Comment. Math. 43 2010 209–225 | MR

[17] Cangül, N., Demirci, M., Luca, F., Pintér, Á., Soydan, G.: On the Diophantine equation $x^2 + 2^a11^b = y^n$. Fibonacci Quart. 48 2010 39–46 | MR

[18] Carmichael, R.D.: On the numerical factors of the arithmetic forms $ \alpha ^{n} \pm \beta ^{n} $. Ann. Math. (2) 15 1913 30–70 | MR

[19] Cohn, J.H.E.: The diophantine equation $x^2+2^k=y^n$. II. Int. J. Math. Math. Sci. 22 1999 459–462 | DOI | MR

[20] Cohn, J.H.E.: The diophantine equation $x^2+2^k=y^n$. Arch. Math (Basel) 59 1992 341–344 | DOI | MR

[21] Cohn, J.H.E.: The diophantine equation $x^2+C=y^n$. Acta Arith. 65 1993 367–381 | MR

[22] Cohn, J.H.E.: The diophantine equation $x^2+C=y^n$ II. Acta Arith. 109 2003 205–206 | DOI | MR | Zbl

[23] Ellenberg, J.S.: Galois representations to $\mathbb {Q}$-curves and the generalized Fermat Equation $A^4+B^2=C^p$. Amer. J. Math. 126 (4) 2004 763–787 | MR

[24] Goins, E., Luca, F., Togbe, A.: On the Diophantine Equation $x^2 + 2^{\alpha }5^{\beta }13^{\gamma } = y^n$. A.J. van der Poorten, A. Stein (eds.)ANTS VIII Proceedings ANTS VIII, Lecture Notes in Computer Science 5011 2008 430–432 | MR | Zbl

[25] Győry, K., Pink, I., Pintér, Á.: Power values of polynomials and binomial Thue-Mahler equations. Publ. Math. Debrecen 65 2004 341–362 | MR | Zbl

[26] Le, M.: On Cohn’s conjecture concerning the diophantine equation $x^2+2^m=y^n$. Arch. Math. Basel 78/1 2002 26–35 | MR | Zbl

[27] Le, M.: On the diophantine equation $x^2+p^2=y^n$. Publ. Math. Debrecen 63 2003 27–78 | MR | Zbl

[28] Lebesgue, V.A.: Sur l’impossibilité en nombres entier de l’equation $x^m=y^2+1$. Nouvelle Annales des Mathématiques (1) 9 1850 178–181

[29] Ljunggren, W.: Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen. Ark. Mat. Astr. Fys. 29A 1943 No. 13 | MR | Zbl

[30] Ljunggren, W.: On the diophantine equation $Cx^2+D=y^n$. Pacific J. Math. 14 1964 585–596 | DOI | MR

[31] Luca, F.: On a diophantine equation. Bull. Austral. Math. Soc. 61 2000 241–246 | DOI | MR | Zbl

[32] Luca, F.: On the equation $x^2+2^a3^b=y^n$. Int. J. Math. Sci. 29 2002 239–244 | DOI | MR

[33] Luca, F., Togbe, A.: On the Diophantine equation $x^2 + 7^{2k} = y^n$. Fibonacci Quarterly 54 2007 322–326 | MR | Zbl

[34] Luca, F., Togbe, A.: On the Diophantine equation $x^2 + 2^a5^b = y^n$. Int. J. Number Theory 4 6 2008 973–979 | DOI | MR

[35] Mignotte, M., Weger, B.M.M de: On the equations $x^2+74=y^5$ and $x^2+86=y^5$. Glasgow Math. J. 38/1 1996 77–85 | MR

[36] Mollin, R.A.: Quadratics. CRC Press, New York 1996 | MR | Zbl

[37] Mordell, L.J.: Diophantine Equations. Academic Press 1969 | MR | Zbl

[38] Muriefah, F.S.A., Luca, F., Togbe, A.: On the diophantine equation $x^2+5^a13^b=y^n$. Glasgow Math. J. 50 2008 175–181 | MR

[39] Nagell, T.: Sur l’impossibilité de quelques équations a deux indeterminées. Norsk. Mat. Forensings Skifter 13 1923 65–82

[40] Nagell, T.: Contributions to the theory of a category of diophantine equations of the second degree with two unknowns. Nova Acta Reg. Soc. Upsal. IV Ser. 16, Uppsala 1955 1–38 | MR

[41] Pink, I.: On the diophantine equation $x^2+2^{\alpha }3^{\beta }5^{\gamma }7^{\delta }=y^n$. Publ. Math. Debrecen 70/1–2 2007 149–166 | MR | Zbl

[42] Ribenboim, P.: The little book of big primes. Springer-Verlag 1991 | MR | Zbl

[43] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations. Indag. Math. (N.S.) 17/1 2006 103–114 | DOI | MR | Zbl

[44] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms. Publ. Math. Debrecen 71/3–4 2007 349–374 | MR | Zbl

[45] Schinzel, A., Tijdeman, R.: On the equation $y^m=P(x)$. Acta Arith. 31 1976 199–204 | MR

[46] Shorey, T.N., van der Poorten, A.J., Tijdemann, R., Schinzel, A.: Applications of the Gel’fond-Baker method to Diophantine equations. Transcendence Theory: Advances and Applications Academic Press, London-New York, San Francisco 1977 59–77

[47] Shorey, T.N., Tijdeman, R.: Exponential Diophantine equations. Cambridge Tracts in Mathematics, 87. Cambridge University Press, Cambridge 1986 x+240 pp. | MR | Zbl

[48] Tengely, Sz.: On the Diophantine equation $x^2+a^2=2y^p$. Indag. Math. (N.S.) 15 2004 291–304 | MR

[49] Voutier, P.M.: Primitive divisors of Lucas and Lehmer sequences. Math. Comp. 64 1995 869–888 | DOI | MR | Zbl