@article{COMIM_2010_18_1_a4,
author = {Krupkov\'a, Olga},
title = {Geometric mechanics on nonholonomic submanifolds},
journal = {Communications in Mathematics},
pages = {51--77},
year = {2010},
volume = {18},
number = {1},
mrnumber = {2848506},
zbl = {1248.70018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a4/}
}
Krupková, Olga. Geometric mechanics on nonholonomic submanifolds. Communications in Mathematics, Tome 18 (2010) no. 1, pp. 51-77. http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a4/
[1] Balseiro, P., Marrero, J.C., de Diego, D. Martín, Padrón, E.: A unified framework for mechanics: Hamilton-Jacobi equation and applications. Nonlinearity 23 2010 1887–1918 | DOI | MR
[2] Bloch, A.M.: Nonholonomic Mechanics and Control. Springer Verlag, New York 2003 | MR | Zbl
[3] Bloch, A.M., Fernandez, O.E., Mestdag, T.: Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations. Rep. Math. Phys. 63 2009 225–249 | DOI | MR | Zbl
[4] Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic systems with symmetry. Arch. Ration. Mech. Anal. 136 1996 21–99 | DOI | MR
[5] Cantrijn, F., de León, M., Marrero, J.C., de Diego, D. Martín: Reduction of constrained systems with symmetry. J. Math. Phys. 40 1999 795–820 | DOI | MR
[6] Cardin, F., Favretti, M.: On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints. J. Geom. Phys. 18 1996 295–325 | DOI | MR | Zbl
[7] Cariñena, J.F., Rañada, M.F.: Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers. J. Phys. A: Math. Gen. 26 1993 1335–1351 | DOI | MR
[8] Cendra, H., Ferraro, S., Grillo, S.: Lagrangian reduction of generalized nonholonomic systems. J. Geom. Phys. 58 2008 1271–1290 | DOI | MR | Zbl
[9] Chetaev, N.G.: On the Gauss principle. Izv. Kazan. Fiz.-Mat. Obsc. 6 1932–33 323–326 (in Russian)
[10] Cortés, J.: Geometric, Control and Numerical Aspects of Nonholonomic Systems. Lecture Notes in Mathematics, Vol. 1793, Springer Verlag, New York 2002 | DOI | MR | Zbl
[11] Cortés, J., de León, M., Marrero, J.C., Martínez, E.: Nonholonomic Lagrangian systems on Lie algebroids. Discrete Contin. Dyn. Syst. A 24 2009 213–271 | DOI | MR | Zbl
[12] Cortés, J., de León, M., de Diego, D. Martín, Martínez, S.: Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions. SIAM J. Control Optim. 41 2003 1389–1412 | DOI | MR
[13] de León, M., de Diego, D.M.: On the geometry of non-holonomic Lagrangian systems. J. Math. Phys. 37 1996 3389–3414 | DOI | MR
[14] de León, M., Marrero, J.C., de Diego, D.M.: Non-holonomic Lagrangian systems in jet manifolds. J. Phys. A: Math. Gen. 30 1997 1167–1190 | DOI | MR
[15] Giachetta, G.: Jet methods in nonholonomic mechanics. J. Math. Phys. 33 1992 1652–1665 | DOI | MR | Zbl
[16] Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier 23 1973 203–267 | DOI | MR | Zbl
[17] Grabowska, K., Grabowski, J.: Variational calculus with constraints on general algebroids. J. Phys. A: Math. Theor. 41 2008 No. 175204 | DOI | MR | Zbl
[18] Helmholtz, H.: Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung. J. für die reine u. angewandte Math. 100 1887 137–166
[19] Janová, J., Musilová, J.: Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion. Int. J. Non-Linear Mechanics 44 2009 98–105 | DOI | Zbl
[20] Koon, W.S., Marsden, J.E.: The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Reports on Math. Phys. 40 1997 21–62 | DOI | MR | Zbl
[21] Krupka, D.: Some geometric aspects of variational problems in fibered manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14 1973 1–65 Electronic transcription: arXiv:math-ph/0110005
[22] Krupka, D.: A geometric theory of ordinary first order variational problems in fibered manifolds, II. Invariance. J. Math. Anal. Appl. 49 1975 469–476 | DOI | MR | Zbl
[23] Krupka, D.: Global variational theory in fibred spaces. D. Krupka, D. Saunders (eds.)Handbook of Global Analysis Elsevier 2008 773–836 | MR | Zbl
[24] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form. Diff. Geom. Appl. 25 2007 518–542 | DOI | MR
[25] Krupka, D., Musilová, J.: Hamilton extremals in higher order mechanics. Arch. Math. (Brno) 20 1984 21–30 | MR
[26] Krupková, O.: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity. Arch. Math. (Brno) 22 1986 97–120 | MR
[27] Krupková, O.: Lepagean 2-forms in higher order Hamiltonian mechanics, II. Inverse Problem. Arch. Math. (Brno) 23 1987 155–170 | MR
[28] Krupková, O.: The Geometry of Ordinary Variational Equations. Lecture Notes in Mathematics, Vol. 1678. Springer Verlag, Berlin 1997 | MR
[29] Krupková, O.: Mechanical systems with nonholonomic constraints. J. Math. Phys. 38 1997 5098–5126 | DOI | MR
[30] Krupková, O.: On the geometry of non-holonomic mechanical systems. O. Kowalski, I. Kolář, D. Krupka, J. Slovák (eds.)Differential Geometry and Applications Proc. Conf. Brno 1998. Masaryk Univ., Brno 1999 533–546 | MR
[31] Krupková, O.: Higher-order mechanical systems with constraints. J. Math. Phys. 41 2000 5304–5324 | MR
[32] Krupková, O.: Differential systems in higher-order mechanics. D. Krupka (ed.)Proceedings of the Seminar on Differential Geometry Mathematical Publications, Vol. 2. Silesian Univ., Opava 2000 87–130 | MR
[33] Krupková, O.: Recent results in the geometry of constrained systems. Reports on Math. Phys. 49 2002 269–278 | DOI | MR | Zbl
[34] Krupková, O.: Partial differential equations with differential constraints. J. Differential Equations 220 2006 354–395 | DOI | Zbl
[35] Krupková, O.: The nonholonomic variational principle. J. Phys. A: Math. Theor. 42 2009 No. 185201 | MR | Zbl
[36] Krupková, O.: Noether Theorem, 90 years on. Geometry and Physics, Proc. XVII International Fall Workshop on Geometry and Physics, Castro Urdiales, Spain, 2008 , AIP Conf. Proceedings, American Institute of Physics, New York 2009 159–170
[37] Krupková, O.: Variational Equations on Manifolds. A.R. Baswell (ed.)Advances in Mathematics Research Vol. 9. Nova Science Publishers, New York 2009 201–274 | MR
[38] Krupková, O., Musilová, J.: The relativistic particle as a mechanical systems with non-holonomic constraints. J. Phys. A: Math. Gen. 34 2001 3859–3875 | DOI | MR
[39] Krupková, O., Musilová, J.: Non-holonomic variational systems. Reports on Math. Phys. 55 2005 211–220 | DOI
[40] Krupková, O., Prince, G.E.: Second Order Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the Calculus of Variations. D. Krupka, D. Saunders (eds.)Handbook of Global Analysis Elsevier 2008 841–908 | MR | Zbl
[41] Krupková, O., Volný, P.: Euler-Lagrange and Hamilton equations for non-holonomic systems in field theory. J. Phys. A: Math. Gen. 38 2005 No. 8715 | DOI | MR | Zbl
[42] Krupková, O., Volný, P.: Differential equations with constraits in jet bundles: Lagrangian and Hamiltonian systems. Lobachevskii J. Math. 23 2006 95–150
[43] Massa, E., Pagani, E.: A new look at classical mechanics of constrained systems. Ann. Inst. Henri Poincaré 66 1997 1–36 | MR | Zbl
[44] Mestdag, T., Langerock, B.: A Lie algebroid framework for nonholonomic systems. J. Phys. A: Math. Gen. 38 2005 1097–1111 | DOI | MR
[45] Noether, E.: Invariante Variationsprobleme. Nachr. kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. 1918 235–257
[46] Sarlet, W.: A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems. Extracta Mathematicae 11 1996 202–212 | MR
[47] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems. J. Phys. A: Math. Gen. 28 1995 3253–3268 | DOI | MR | Zbl
[48] Saunders, D.J.: The Geometry of Jet Bundles. London Math. Soc. Lecture Notes Series, Vol. 142. Cambridge Univ. Press, Cambridge 1989 | MR | Zbl
[49] Saunders, D.J., Sarlet, W., Cantrijn, F.: A geometrical framework for the study of non-holonomic Lagrangian systems II. J. Phys. A.: Math. Gen. 29 1996 4265–4274 | DOI | MR | Zbl
[50] Swaczyna, M.: Several examples of nonholonomic mechanical systems. Communications in Mathematics, to appear
[51] Volný, P., Krupková, O.: Hamilton equations for non-holonomic mechanical systems. O. Kowalski, D. Krupka, J. Slovák (eds.)Differential Geometry and Its Applications Proc. Conf., Opava, 2001. Mathematical Publications, Vol. 3. Silesian Univ., Opava, Czech Republic 2001 369–380 | MR