Geometric mechanics on nonholonomic submanifolds
Communications in Mathematics, Tome 18 (2010) no. 1, pp. 51-77 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this survey article, nonholonomic mechanics is presented as a part of geometric mechanics. We follow a geometric setting where the constraint manifold is a submanifold in a jet bundle, and a nonholonomic system is modelled as an exterior differential system on the constraint manifold. The approach admits to apply coordinate independent methods, and is not limited to Lagrangian systems under linear constraints. The new methods apply to general (possibly nonconservative) mechanical systems subject to general (possibly nonlinear) nonholonomic constraints, and admit a straightforward generalization to higher order mechanics and field theory. In particular, we are concerned with the following topics: the geometry of nonholonomic constraints, equations of motion of nonholonomic systems on constraint manifolds and their geometric meaning, a nonholonomic variational principle, symmetries, a nonholonomic Noether theorem, regularity, and nonholonomic Hamilton equations.
In this survey article, nonholonomic mechanics is presented as a part of geometric mechanics. We follow a geometric setting where the constraint manifold is a submanifold in a jet bundle, and a nonholonomic system is modelled as an exterior differential system on the constraint manifold. The approach admits to apply coordinate independent methods, and is not limited to Lagrangian systems under linear constraints. The new methods apply to general (possibly nonconservative) mechanical systems subject to general (possibly nonlinear) nonholonomic constraints, and admit a straightforward generalization to higher order mechanics and field theory. In particular, we are concerned with the following topics: the geometry of nonholonomic constraints, equations of motion of nonholonomic systems on constraint manifolds and their geometric meaning, a nonholonomic variational principle, symmetries, a nonholonomic Noether theorem, regularity, and nonholonomic Hamilton equations.
Classification : 37J60, 70F25, 70G45, 70G75, 70H30
@article{COMIM_2010_18_1_a4,
     author = {Krupkov\'a, Olga},
     title = {Geometric mechanics on nonholonomic submanifolds},
     journal = {Communications in Mathematics},
     pages = {51--77},
     year = {2010},
     volume = {18},
     number = {1},
     mrnumber = {2848506},
     zbl = {1248.70018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a4/}
}
TY  - JOUR
AU  - Krupková, Olga
TI  - Geometric mechanics on nonholonomic submanifolds
JO  - Communications in Mathematics
PY  - 2010
SP  - 51
EP  - 77
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a4/
LA  - en
ID  - COMIM_2010_18_1_a4
ER  - 
%0 Journal Article
%A Krupková, Olga
%T Geometric mechanics on nonholonomic submanifolds
%J Communications in Mathematics
%D 2010
%P 51-77
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a4/
%G en
%F COMIM_2010_18_1_a4
Krupková, Olga. Geometric mechanics on nonholonomic submanifolds. Communications in Mathematics, Tome 18 (2010) no. 1, pp. 51-77. http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a4/

[1] Balseiro, P., Marrero, J.C., de Diego, D. Martín, Padrón, E.: A unified framework for mechanics: Hamilton-Jacobi equation and applications. Nonlinearity 23 2010 1887–1918 | DOI | MR

[2] Bloch, A.M.: Nonholonomic Mechanics and Control. Springer Verlag, New York 2003 | MR | Zbl

[3] Bloch, A.M., Fernandez, O.E., Mestdag, T.: Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations. Rep. Math. Phys. 63 2009 225–249 | DOI | MR | Zbl

[4] Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic systems with symmetry. Arch. Ration. Mech. Anal. 136 1996 21–99 | DOI | MR

[5] Cantrijn, F., de León, M., Marrero, J.C., de Diego, D. Martín: Reduction of constrained systems with symmetry. J. Math. Phys. 40 1999 795–820 | DOI | MR

[6] Cardin, F., Favretti, M.: On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints. J. Geom. Phys. 18 1996 295–325 | DOI | MR | Zbl

[7] Cariñena, J.F., Rañada, M.F.: Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers. J. Phys. A: Math. Gen. 26 1993 1335–1351 | DOI | MR

[8] Cendra, H., Ferraro, S., Grillo, S.: Lagrangian reduction of generalized nonholonomic systems. J. Geom. Phys. 58 2008 1271–1290 | DOI | MR | Zbl

[9] Chetaev, N.G.: On the Gauss principle. Izv. Kazan. Fiz.-Mat. Obsc. 6 1932–33 323–326 (in Russian)

[10] Cortés, J.: Geometric, Control and Numerical Aspects of Nonholonomic Systems. Lecture Notes in Mathematics, Vol. 1793, Springer Verlag, New York 2002 | DOI | MR | Zbl

[11] Cortés, J., de León, M., Marrero, J.C., Martínez, E.: Nonholonomic Lagrangian systems on Lie algebroids. Discrete Contin. Dyn. Syst. A 24 2009 213–271 | DOI | MR | Zbl

[12] Cortés, J., de León, M., de Diego, D. Martín, Martínez, S.: Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions. SIAM J. Control Optim. 41 2003 1389–1412 | DOI | MR

[13] de León, M., de Diego, D.M.: On the geometry of non-holonomic Lagrangian systems. J. Math. Phys. 37 1996 3389–3414 | DOI | MR

[14] de León, M., Marrero, J.C., de Diego, D.M.: Non-holonomic Lagrangian systems in jet manifolds. J. Phys. A: Math. Gen. 30 1997 1167–1190 | DOI | MR

[15] Giachetta, G.: Jet methods in nonholonomic mechanics. J. Math. Phys. 33 1992 1652–1665 | DOI | MR | Zbl

[16] Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier 23 1973 203–267 | DOI | MR | Zbl

[17] Grabowska, K., Grabowski, J.: Variational calculus with constraints on general algebroids. J. Phys. A: Math. Theor. 41 2008 No. 175204 | DOI | MR | Zbl

[18] Helmholtz, H.: Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung. J. für die reine u. angewandte Math. 100 1887 137–166

[19] Janová, J., Musilová, J.: Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion. Int. J. Non-Linear Mechanics 44 2009 98–105 | DOI | Zbl

[20] Koon, W.S., Marsden, J.E.: The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Reports on Math. Phys. 40 1997 21–62 | DOI | MR | Zbl

[21] Krupka, D.: Some geometric aspects of variational problems in fibered manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14 1973 1–65 Electronic transcription: arXiv:math-ph/0110005

[22] Krupka, D.: A geometric theory of ordinary first order variational problems in fibered manifolds, II. Invariance. J. Math. Anal. Appl. 49 1975 469–476 | DOI | MR | Zbl

[23] Krupka, D.: Global variational theory in fibred spaces. D. Krupka, D. Saunders (eds.)Handbook of Global Analysis Elsevier 2008 773–836 | MR | Zbl

[24] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form. Diff. Geom. Appl. 25 2007 518–542 | DOI | MR

[25] Krupka, D., Musilová, J.: Hamilton extremals in higher order mechanics. Arch. Math. (Brno) 20 1984 21–30 | MR

[26] Krupková, O.: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity. Arch. Math. (Brno) 22 1986 97–120 | MR

[27] Krupková, O.: Lepagean 2-forms in higher order Hamiltonian mechanics, II. Inverse Problem. Arch. Math. (Brno) 23 1987 155–170 | MR

[28] Krupková, O.: The Geometry of Ordinary Variational Equations. Lecture Notes in Mathematics, Vol. 1678. Springer Verlag, Berlin 1997 | MR

[29] Krupková, O.: Mechanical systems with nonholonomic constraints. J. Math. Phys. 38 1997 5098–5126 | DOI | MR

[30] Krupková, O.: On the geometry of non-holonomic mechanical systems. O. Kowalski, I. Kolář, D. Krupka, J. Slovák (eds.)Differential Geometry and Applications Proc. Conf. Brno 1998. Masaryk Univ., Brno 1999 533–546 | MR

[31] Krupková, O.: Higher-order mechanical systems with constraints. J. Math. Phys. 41 2000 5304–5324 | MR

[32] Krupková, O.: Differential systems in higher-order mechanics. D. Krupka (ed.)Proceedings of the Seminar on Differential Geometry Mathematical Publications, Vol. 2. Silesian Univ., Opava 2000 87–130 | MR

[33] Krupková, O.: Recent results in the geometry of constrained systems. Reports on Math. Phys. 49 2002 269–278 | DOI | MR | Zbl

[34] Krupková, O.: Partial differential equations with differential constraints. J. Differential Equations 220 2006 354–395 | DOI | Zbl

[35] Krupková, O.: The nonholonomic variational principle. J. Phys. A: Math. Theor. 42 2009 No. 185201 | MR | Zbl

[36] Krupková, O.: Noether Theorem, 90 years on. Geometry and Physics, Proc. XVII International Fall Workshop on Geometry and Physics, Castro Urdiales, Spain, 2008 , AIP Conf. Proceedings, American Institute of Physics, New York 2009 159–170

[37] Krupková, O.: Variational Equations on Manifolds. A.R. Baswell (ed.)Advances in Mathematics Research Vol. 9. Nova Science Publishers, New York 2009 201–274 | MR

[38] Krupková, O., Musilová, J.: The relativistic particle as a mechanical systems with non-holonomic constraints. J. Phys. A: Math. Gen. 34 2001 3859–3875 | DOI | MR

[39] Krupková, O., Musilová, J.: Non-holonomic variational systems. Reports on Math. Phys. 55 2005 211–220 | DOI

[40] Krupková, O., Prince, G.E.: Second Order Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the Calculus of Variations. D. Krupka, D. Saunders (eds.)Handbook of Global Analysis Elsevier 2008 841–908 | MR | Zbl

[41] Krupková, O., Volný, P.: Euler-Lagrange and Hamilton equations for non-holonomic systems in field theory. J. Phys. A: Math. Gen. 38 2005 No. 8715 | DOI | MR | Zbl

[42] Krupková, O., Volný, P.: Differential equations with constraits in jet bundles: Lagrangian and Hamiltonian systems. Lobachevskii J. Math. 23 2006 95–150

[43] Massa, E., Pagani, E.: A new look at classical mechanics of constrained systems. Ann. Inst. Henri Poincaré 66 1997 1–36 | MR | Zbl

[44] Mestdag, T., Langerock, B.: A Lie algebroid framework for nonholonomic systems. J. Phys. A: Math. Gen. 38 2005 1097–1111 | DOI | MR

[45] Noether, E.: Invariante Variationsprobleme. Nachr. kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. 1918 235–257

[46] Sarlet, W.: A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems. Extracta Mathematicae 11 1996 202–212 | MR

[47] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems. J. Phys. A: Math. Gen. 28 1995 3253–3268 | DOI | MR | Zbl

[48] Saunders, D.J.: The Geometry of Jet Bundles. London Math. Soc. Lecture Notes Series, Vol. 142. Cambridge Univ. Press, Cambridge 1989 | MR | Zbl

[49] Saunders, D.J., Sarlet, W., Cantrijn, F.: A geometrical framework for the study of non-holonomic Lagrangian systems II. J. Phys. A.: Math. Gen. 29 1996 4265–4274 | DOI | MR | Zbl

[50] Swaczyna, M.: Several examples of nonholonomic mechanical systems. Communications in Mathematics, to appear

[51] Volný, P., Krupková, O.: Hamilton equations for non-holonomic mechanical systems. O. Kowalski, D. Krupka, J. Slovák (eds.)Differential Geometry and Its Applications Proc. Conf., Opava, 2001. Mathematical Publications, Vol. 3. Silesian Univ., Opava, Czech Republic 2001 369–380 | MR