@article{COMIM_2010_18_1_a3,
author = {Crampin, Mike},
title = {Homogeneous systems of higher-order ordinary differential equations},
journal = {Communications in Mathematics},
pages = {37--50},
year = {2010},
volume = {18},
number = {1},
mrnumber = {2848505},
zbl = {1244.34010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a3/}
}
Crampin, Mike. Homogeneous systems of higher-order ordinary differential equations. Communications in Mathematics, Tome 18 (2010) no. 1, pp. 37-50. http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a3/
[1] Anderson, I., Thompson, G.: The inverse problem of the calculus of variations for ordinary differential equations. Mem. Amer. Math. Soc. 98 1992 No. 473 | MR | Zbl
[2] de Andrés, L.C., de León, M., Rodrigues, P.R.: Canonical connections associated with regular Lagrangians of higher order. Geom. Dedicata 39 1991 17–28 | MR
[3] Antonelli, P., Bucataru, I.: KCC theory of a system of second order differential equations. Handbook of Finsler Geometry Vol. 1 , Antonelli (ed.)Kluwer 2003 83–174 | MR | Zbl
[4] Bucataru, I., Constantinescu, O., Dahl, M.F.: A geometric setting for systems of ordinary differential equations. preprint: arXiv:1011.5799 [math.DG]
[5] Crampin, M.: Connections of Berwald type. Publ. Math. Debrecen 57 2000 455–473 | MR | Zbl
[6] Crampin, M., Sarlet, W., Cantrijn, F.: Higher-order differential equations and higher-order Lagrangian mechanics. Math. Proc. Cam. Phil. Soc. 99 1986 565–587 | DOI | MR | Zbl
[7] Crampin, M., Saunders, D.J.: Affine and projective transformations of Berwald connections. Diff. Geom. Appl. 25 2007 235–250 | DOI | MR | Zbl
[8] Crampin, M., Saunders, D.J.: On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant. Groups, Geometry and Physics , Clemente-Gallardo and Martínez (eds.)Monografía 29, Real Academia de Ciencias de Zaragoza 2007 79–92 | MR
[9] Fritelli, S., Kozameh, C., Newman, E.T.: Differential geometry from differential equations. Comm. Math. Phys. 223 2001 383–408 | DOI | MR
[10] Godliński, M., Nurowski, P.: Third order ODEs and four-dimensional split signature Einstein metrics. J. Geom. Phys. 56 2006 344–357 | DOI | MR
[11] Godliński, M., Nurowski, P.: Geometry of third-order ODEs. preprint: arXiv:0902.4129v1 [math.DG]
[12] Saunders, D.J.: On the inverse problem for even-order ordinary differential equations in the higher-order calculus of variations. Diff. Geom. Appl. 16 2002 149–166 | DOI | MR | Zbl
[13] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer 2001 | MR | Zbl