@article{COMIM_2010_18_1_a2,
author = {Guo, Yong-Xin and Liu, Chang and Liu, Shi-Xing},
title = {Generalized {Birkhoffian} realization of nonholonomic systems},
journal = {Communications in Mathematics},
pages = {21--35},
year = {2010},
volume = {18},
number = {1},
mrnumber = {2848504},
zbl = {1253.70016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a2/}
}
Guo, Yong-Xin; Liu, Chang; Liu, Shi-Xing. Generalized Birkhoffian realization of nonholonomic systems. Communications in Mathematics, Tome 18 (2010) no. 1, pp. 21-35. http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a2/
[1] Bloch, A.M., Fernandez, O.E., Mestdag, T.: Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations. Rep. Math. Phys. 63 2009 225–249 | DOI | MR | Zbl
[2] Bloch, A.M., Baillieul, J., Crouch, P., Marsden J.: Nonholonomic Mechanics and Control. Springer, London 2003 | MR | Zbl
[3] Cortes, J.M.: Geometric, Control and Numerical Aspects of Nonholonomic Systems. Springer, Berlin 2002 | MR | Zbl
[4] Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulation of nonholonomic constrained systems. Rep. Math. Phys. 47 2001 313–322 | DOI | MR
[5] Hojman, S.: Construction of genotopic transformations for first order systems of differential equations. Hadronic J. 5 1981 174–184 | MR | Zbl
[6] Ibort, L.A., Solano, J.M.: On the inverse problem of the calculus of variations for a class of coupled dynamical systems. Inverse Problems 7 1991 713–725 | DOI | MR | Zbl
[7] Krupková, O., Musilová, J.: Non-holonomic variational systems. Rep. Math. Phys. 55 2005 211–220 | DOI
[8] Li, J.B., Zhao, X.H., Liu, Z.R.: Theory of Generalized Hamiltonian Systems and Its Applications. Science Press of China Beijing 2007
[9] Liu, C., Liu, S.X., Guo, Y.X.: Inverse problem for Chaplygin’s nonholonomic. Sci. Chin. G 53 2010 (to appear)
[10] Massa, E., Pagani, E.: Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics. Ann. Inst. Henri Poincaré: Phys. Theor. 61 1994 17–62 | MR | Zbl
[11] Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian systems. Press of Beijing Institute of Technology Beijing 1996 (in Chinese)
[12] Morando, P., Vignolo, S.: A geometric approach to constrained mechanical systems, symmetries and inverse problems. J. Phys. A: Math. Gen. 31 1998 8233–8245 | DOI | MR | Zbl
[13] Santilli, R.M.: Foundations of Theoretical Mechanics I. Springer-Verlag, New York 1978 | MR | Zbl
[14] Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer-Verlag, New York 1983 | MR | Zbl
[15] Sarlet, W.: The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics. J. Phys. A: Math. Gen. 15 1982 1503–1517 | DOI | MR | Zbl
[16] Sarlet, W., Cantrijn, F., Saunders, D.J.: A differential geometric setting for mixed first- and second-order ordinary differential equations. J. Phys. A: Math. Gen. 30 1997 4031–4052 | DOI | MR | Zbl
[17] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems. J. Phys. A: Math. Gen. 28 1995 3253–3268 | DOI | MR | Zbl
[18] Sarlet, W., Thompson, G., Prince, G.E.: The inverse problem in the calculus of variations: the use of geometrical calculus in Douglas’s analysis. Trans. Amer. Math. Soc. 354 2002 2897–2919 | DOI | MR
[19] Saunders, D.J., Sarlet, W., Cantrijn, F.: A geometrical framework for the study of non-holonomic Lagrangian systems II. J. Phys. A: Math. Gen. 29 1996 4265–4274 | DOI | MR | Zbl