@article{COMIM_2010_18_1_a1,
author = {Saunders, David},
title = {Some geometric aspects of the calculus of variations in several independent variables},
journal = {Communications in Mathematics},
pages = {3--19},
year = {2010},
volume = {18},
number = {1},
mrnumber = {2848502},
zbl = {1235.58014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a1/}
}
Saunders, David. Some geometric aspects of the calculus of variations in several independent variables. Communications in Mathematics, Tome 18 (2010) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a1/
[1] Anderson, I.M.: The variational bicomplex. book preprint, technical report of the Utah State University, 1989 Available at http://www.math.usu.edu/fg_mp/ | MR | Zbl
[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer 2000 | MR | Zbl
[3] Crampin, M., Saunders, D.J.: The Hilbert-Carathéodory form for parametric multiple integral problems in the calculus of variations. Acta Appl. Math. 76 (1) 2003 37–55 | DOI | MR | Zbl
[4] Crampin, M., D.J. Saunders: The Hilbert-Carath´eodory and Poincar´e-Cartan forms for higher-order multiple-integral variational problems. Houston J. Math. 30 (3) 2004 657–689 | MR
[5] M. Crampin, D.J. Saunders: On null Lagrangians. Diff. Geom. Appl. 22 (2) 2005 131–146 | MR
[6] Crampin, M., Saunders, D.J.: Homotopy Operators for the Variational Bicomplex, Representations of the Euler-Lagrange Complex, and the Helmholtz-Sonin Conditions. Lobachevskii J. Math. 30 (2) 2009 107–123 | DOI | MR | Zbl
[7] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer 1993 | MR
[8] Krupka, D.: Lepagean forms and higher order variational theories. Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics , S. Benenti, M. Francaviglia, A. Lichnerowicz (eds.)Tecnoprint 1983 197–238 | MR
[9] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations. Krieger 1973
[10] Saunders, D.J.: The geometry of jet bundles. Cambridge University Press 1989 | MR | Zbl
[11] Saunders, D.J.: Jet manifolds and natural bundles. Handbook of Global Analysis , D. Krupka, D.J. Saunders (eds.)Elsevier 2008 1035–1068 | MR | Zbl
[12] Saunders, D.J.: Homogeneous variational complexes and bicomplexes. J. Geom. Phys. 59 2009 727–739 | MR | Zbl
[13] Tulczyjew, W.M.: The Euler-Lagrange resolution. Lecture Notes in Mathematics 836 , Springer 1980 22–48 | DOI | MR | Zbl
[14] Vinogradov, A.M.: The $\mathcal {C}$-spectral sequence, Lagrangian formalism and conservation laws. J. Math. Anal. Appl. 100 1984 1–129 | DOI | MR
[15] Vitolo, R.: Variational sequences. Handbook of Global Analysis , D. Krupka, D.J. Saunders (eds.)Elsevier 2008 1115–1163 | MR | Zbl