Some geometric aspects of the calculus of variations in several independent variables
Communications in Mathematics, Tome 18 (2010) no. 1, pp. 3-19
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper describes some recent research on parametric problems in the calculus of variations. It explains the relationship between these problems and the type of problem more usual in physics, where there is a given space of independent variables, and it gives an interpretation of the first variation formula in this context in terms of cohomology.
This paper describes some recent research on parametric problems in the calculus of variations. It explains the relationship between these problems and the type of problem more usual in physics, where there is a given space of independent variables, and it gives an interpretation of the first variation formula in this context in terms of cohomology.
Classification : 35A15, 58A10, 58A20
Keywords: calculus of variations; parametric problems
@article{COMIM_2010_18_1_a1,
     author = {Saunders, David},
     title = {Some geometric aspects of the calculus of variations in several independent variables},
     journal = {Communications in Mathematics},
     pages = {3--19},
     year = {2010},
     volume = {18},
     number = {1},
     mrnumber = {2848502},
     zbl = {1235.58014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a1/}
}
TY  - JOUR
AU  - Saunders, David
TI  - Some geometric aspects of the calculus of variations in several independent variables
JO  - Communications in Mathematics
PY  - 2010
SP  - 3
EP  - 19
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a1/
LA  - en
ID  - COMIM_2010_18_1_a1
ER  - 
%0 Journal Article
%A Saunders, David
%T Some geometric aspects of the calculus of variations in several independent variables
%J Communications in Mathematics
%D 2010
%P 3-19
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a1/
%G en
%F COMIM_2010_18_1_a1
Saunders, David. Some geometric aspects of the calculus of variations in several independent variables. Communications in Mathematics, Tome 18 (2010) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/COMIM_2010_18_1_a1/

[1] Anderson, I.M.: The variational bicomplex. book preprint, technical report of the Utah State University, 1989 Available at http://www.math.usu.edu/fg_mp/ | MR | Zbl

[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer 2000 | MR | Zbl

[3] Crampin, M., Saunders, D.J.: The Hilbert-Carathéodory form for parametric multiple integral problems in the calculus of variations. Acta Appl. Math. 76 (1) 2003 37–55 | DOI | MR | Zbl

[4] Crampin, M., D.J. Saunders: The Hilbert-Carath´eodory and Poincar´e-Cartan forms for higher-order multiple-integral variational problems. Houston J. Math. 30 (3) 2004 657–689 | MR

[5] M. Crampin, D.J. Saunders: On null Lagrangians. Diff. Geom. Appl. 22 (2) 2005 131–146 | MR

[6] Crampin, M., Saunders, D.J.: Homotopy Operators for the Variational Bicomplex, Representations of the Euler-Lagrange Complex, and the Helmholtz-Sonin Conditions. Lobachevskii J. Math. 30 (2) 2009 107–123 | DOI | MR | Zbl

[7] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer 1993 | MR

[8] Krupka, D.: Lepagean forms and higher order variational theories. Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics , S. Benenti, M. Francaviglia, A. Lichnerowicz (eds.)Tecnoprint 1983 197–238 | MR

[9] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations. Krieger 1973

[10] Saunders, D.J.: The geometry of jet bundles. Cambridge University Press 1989 | MR | Zbl

[11] Saunders, D.J.: Jet manifolds and natural bundles. Handbook of Global Analysis , D. Krupka, D.J. Saunders (eds.)Elsevier 2008 1035–1068 | MR | Zbl

[12] Saunders, D.J.: Homogeneous variational complexes and bicomplexes. J. Geom. Phys. 59 2009 727–739 | MR | Zbl

[13] Tulczyjew, W.M.: The Euler-Lagrange resolution. Lecture Notes in Mathematics 836 , Springer 1980 22–48 | DOI | MR | Zbl

[14] Vinogradov, A.M.: The $\mathcal {C}$-spectral sequence, Lagrangian formalism and conservation laws. J. Math. Anal. Appl. 100 1984 1–129 | DOI | MR

[15] Vitolo, R.: Variational sequences. Handbook of Global Analysis , D. Krupka, D.J. Saunders (eds.)Elsevier 2008 1115–1163 | MR | Zbl