Keywords: cusp forms; exponential sums; Ramanujan tau function; analytic computations
@article{COMIM_2009_17_1_a7,
author = {Ernvall-Hyt\"onen, Anne-Maria and Lepist\"o, Arto},
title = {Bounds and computational results for exponential sums related to cusp forms},
journal = {Communications in Mathematics},
pages = {81--90},
year = {2009},
volume = {17},
number = {1},
mrnumber = {2582961},
zbl = {1246.11138},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a7/}
}
TY - JOUR AU - Ernvall-Hytönen, Anne-Maria AU - Lepistö, Arto TI - Bounds and computational results for exponential sums related to cusp forms JO - Communications in Mathematics PY - 2009 SP - 81 EP - 90 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a7/ LA - en ID - COMIM_2009_17_1_a7 ER -
Ernvall-Hytönen, Anne-Maria; Lepistö, Arto. Bounds and computational results for exponential sums related to cusp forms. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a7/
[1] PARI/GP, Version @vers. 2006. available from http://pari.math.u-bordeaux.fr/
[2] Apostol, T. M.: Modular functions and Dirichlet series in number theory. volume 41 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990 | MR | Zbl
[3] Ernvall-Hytönen, A.-M.: A relation between Fourier coefficients of holomorphic cusp forms and exponential sums. to appear in Publications de l’Institut Mathematique (Beograd)
[4] Ernvall-Hytönen, A.-M., Karppinen, K.: On short exponential sums involving Fourier coefficients of holomorphic cusp forms. IntṀath. Res. Not. IMRN, (10) : Art. ID. rnn022, 44, 2008 | MR | Zbl
[5] Ernvall-Hytönen, A.-M.: An improvement on the upper bound of exponential sums of holomorphic cusp forms. submitted
[6] Ivić, A.: Large values of certain number-theoretic error terms. Acta Arith., 56(2) : 135–159, 1990 | MR
[7] Jutila, M.: On exponential sums involving the Ramanujan function. Proc. Indian Acad. Sci. Math. Sci., 97(1-3) : 157–166 (1988), 1987 | MR
[8] Koecher, M., Krieg, A.: Elliptische Funktionen und Modulformen. Springer-Verlag, Berlin, 1998 | MR | Zbl
[9] Rankin, R. A.: Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions ii. The order of Fourier coefficients of integral modular forms. Proc. Cambridge Philos. Soc., 35 : 357–372, 1939
[10] Wilton, J. R.: A note on Ramanujan’s arithmetical function $\tau (n)$. Proc. Cambridge Philos. Soc., 25(II) : 121–129, 1929