Bounds and computational results for exponential sums related to cusp forms
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 81-90
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to present some computer data suggesting the correct size of bounds for exponential sums of Fourier coefficients of holomorphic cusp forms.
The aim of this paper is to present some computer data suggesting the correct size of bounds for exponential sums of Fourier coefficients of holomorphic cusp forms.
Classification : 11L07, 11Y35
Keywords: cusp forms; exponential sums; Ramanujan tau function; analytic computations
@article{COMIM_2009_17_1_a7,
     author = {Ernvall-Hyt\"onen, Anne-Maria and Lepist\"o, Arto},
     title = {Bounds and computational results for exponential sums related to cusp forms},
     journal = {Communications in Mathematics},
     pages = {81--90},
     year = {2009},
     volume = {17},
     number = {1},
     mrnumber = {2582961},
     zbl = {1246.11138},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a7/}
}
TY  - JOUR
AU  - Ernvall-Hytönen, Anne-Maria
AU  - Lepistö, Arto
TI  - Bounds and computational results for exponential sums related to cusp forms
JO  - Communications in Mathematics
PY  - 2009
SP  - 81
EP  - 90
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a7/
LA  - en
ID  - COMIM_2009_17_1_a7
ER  - 
%0 Journal Article
%A Ernvall-Hytönen, Anne-Maria
%A Lepistö, Arto
%T Bounds and computational results for exponential sums related to cusp forms
%J Communications in Mathematics
%D 2009
%P 81-90
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a7/
%G en
%F COMIM_2009_17_1_a7
Ernvall-Hytönen, Anne-Maria; Lepistö, Arto. Bounds and computational results for exponential sums related to cusp forms. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a7/

[1] PARI/GP, Version @vers. 2006. available from http://pari.math.u-bordeaux.fr/

[2] Apostol, T. M.: Modular functions and Dirichlet series in number theory. volume 41 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990 | MR | Zbl

[3] Ernvall-Hytönen, A.-M.: A relation between Fourier coefficients of holomorphic cusp forms and exponential sums. to appear in Publications de l’Institut Mathematique (Beograd)

[4] Ernvall-Hytönen, A.-M., Karppinen, K.: On short exponential sums involving Fourier coefficients of holomorphic cusp forms. IntṀath. Res. Not. IMRN, (10) : Art. ID. rnn022, 44, 2008 | MR | Zbl

[5] Ernvall-Hytönen, A.-M.: An improvement on the upper bound of exponential sums of holomorphic cusp forms. submitted

[6] Ivić, A.: Large values of certain number-theoretic error terms. Acta Arith., 56(2) : 135–159, 1990 | MR

[7] Jutila, M.: On exponential sums involving the Ramanujan function. Proc. Indian Acad. Sci. Math. Sci., 97(1-3) : 157–166 (1988), 1987 | MR

[8] Koecher, M., Krieg, A.: Elliptische Funktionen und Modulformen. Springer-Verlag, Berlin, 1998 | MR | Zbl

[9] Rankin, R. A.: Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions ii. The order of Fourier coefficients of integral modular forms. Proc. Cambridge Philos. Soc., 35 : 357–372, 1939

[10] Wilton, J. R.: A note on Ramanujan’s arithmetical function $\tau (n)$. Proc. Cambridge Philos. Soc., 25(II) : 121–129, 1929